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Abstract  

A new application of the factorization method is re- 
ported for 3-D shape reconstruction from endoscope image 
sequences. The feasibility of the method is verified with 
some theoretical considerations and results of many kinds of 
extensive experiments. 

INTRODUCTION 

In this paper, we present, some t.heoretical considerations and results 
of several kind extensive experiments on the factorization method 
to  verify the feasibility of the method to  reconstruct 3-D shapes 
from endoscope image sequences. 

The purpose is t o  reconstruct inner wall shapes from images ob- 
served by an endoscope moving within human stomach(Fig.l(n)).  
For this case, it should be noted that  the  movement of the cam- 
era  head cannot be controlled or accurately measured. So that ,  
we must also estimate its movement from the image sequence to  
reconstruct the object shape. 

The  factorization method was developed by Tomasi and Kanade, 
and improved by Poelman and Kanade [ I ,  21, which intends t o  
achieve high accuracy of shape reconstruction for such cases where 
the observing camera movement was unknown. This method uses 
a large number of points and image frames, and robustly applies a 
well-understood matrix computations. 

There have been propmed several techniques for such a prob- 
lem. These existing solutions for the structure from motion prob- 
lem (Fig.l(b)) work well for perfect images without reading noise, 
but i t  is common knowledge that  they are very sensitive to  the 
noise. There reported some techniques for noisy data  based on the 
Kalman filter etc.[3], but they were too complicated to  understand 
what is the essential to achieve their performances. 

Among them, the factorization method provided a possibility 
t o  achieve the  robust accuracy by using a large number of points 
and image frames. IIowever, the latter half process of the method, 
named nonnabzation, was not so  well-understandable as the use of 
singular value decomposition in its first half. Actually, as shown in 
this paper, many choices are possible for this normalization and a 
variety of results have been obtained according to the choice. 

We admit that  this method is easy to  understand, easy to  im- 
plement, and providing enough accuracy for the case where the 
approximation of the optical system holds well. But, the detail 
theoretical basis has been open to  study. 

In this paper, we focus on the normalization process of the fac- 
torization method, and present some kinds of strategies for the 
fitttng with theoretical considerations. Then propose some formu- 
lations of the metric constraints of camera movements for the nor- 
malization, and also propose criteria on the constraints for more 
sophisticated projection models, the Scaled Orthographic Projec- 
tion and Paraperspective Projection as well as for the originally 
proposed Orthgraphic Projection. 

Then, we apply the  method for the 3D shape reconstruction of 
inner walls of human stomach from endoscope images. 

FACTORIZATION METHOD 

Given an image sequence for a target object, as shown in Fig.l(b), 
we are supposing to  have tracked P feature points over F frames. 
We then obtain trajectories of image coordinates {(zjp, yfp)l f = 
1, .  . . , F,  p = 1 , .  . . , P) . We organize all the feature coordinates 

(ztp,yfp) into a 2F x P measurement mairiz W' as  

where ( c z j ,  cy,) is the  center-of-mass of the image coordinates of 
points in the f - th  frame, and 

W' = 

Figure 1: (a)Observation by endoscope moving within human stom- 
ach. (b)Image sequence for a rigid object obtained by a moving 
endoscope camera. P feature point on the object are tracked over 
F frames. 

z p l  - czF . . . ZFP - CZF 

Y l l  - cy, . . .  Y l P  - C Y 1  

2F (1) 



The  essential of the factorization method is that  these image 
coordinates can be rewritten in forms as  

under some approximations of the perspective imaging system de- 
scribed below. 

Approximation of the imaging system 

Let us define the coordinate systems in the imaging system as shown 
in Fig.2. We call S = [al, . . . , n p ]  the shape matrir, t j  the cam- 
era location vector(of the f-th frame), and 6j = [ i J , j J , k j I T  the 
camera pose mairiz (of the f-th frame). For the simpl~city, we set 
the world origin a t  the center-of-mass of the object feature points, 
I.e., 

P  

1 a , , = 0  (4)  
p= l 

Figure 2: Coordinate system 

The main idea of the factorization method is t o  employ ap- 
proximation models with linear for~nulations for this perspective 
imaging to avoid the computational complexity and un-stability a t  
the small cost of the  approximation errors. We employ next three 
approximation models, where the respective relations hold. 

For t,he Orthographic Projection Modelwhich is shown in Fig .J(a) ,  

C Z j  = -iTtj C Y j  = -j:tj 
mj  = ' j ,  nj  = jj 

(5) 

For the  second Scaled Orthographtc Projection Model shown in 
Fig.3(b), letting ZJ = -kTtJ,  

CLJ = -(l/z,)iTt,, cyj = - ( l /z! ) j~tJ  
m j  = ( ~ / z J ) ~ J ,  nJ = ( l / z ~  )J j 

(6) 

For the third Paraperspective Projection Modelshown in Fig.3(c), 
letting ZJ = -kT t J ,  

(a) Orthographic projection model. 

This implies that  the measurement matrix W' can be decom- 
posed into a product of two matrices, as  

This means next two facts: First.ly, W' is a product of 2F x 3 
matrix M and 3 x P matrix S ,  so  that  rank(Wf) = 3 . Secondly, 
S is the shape matrix itself, and M is the motion matrix because 
it contains only informations on the camera motion. 

The camera pose matrix C j  = [ i J ,  j j ,  kJ]  and its position t j  
can be reconstructed from the matrix M ( t, for the orthographic 
projection model cannot be reconstr~~cted)[l ,  2 ,  41. 

Decomposition by SVD Technique 

If the approximations hold, based on the rank theorem, W' can be 
decomposed into 2 F  x 3 and 3 x P matrices by using the singular 
value decomposition (SVD) technique. 

From rank(W1) 5 3, (8) can be rewritten into 

where C is a 3 x 3 diagonal matrix whose diagonal values are non- 
zero singular values of W'. 

Then,  denoting 

we have a decomposition of 

W' = M S  (11) 

Constraints on unknown parameters 

We just introduced a decomposition (11) of W', and this has the 
same form as  (8). B u t  this decomposition does not necessarily 
result in that  M = M and S = S , because, for any regular matrix 
A, M i  = M A  and S' = A-'S satisfy M'S' = W' . Therefore, the 
next problem is t o  find the matrix which implies 

(b) Scaled Orthographic Projection 
Model. 

(c) Paraperspective Projection 
Model. 

Figure 3: Three approximation models for imaging system. (Broken lines indicate true perspective projection, and 
they are substituted with respective solid lines.) 



This process was called normalization in (1, 21. I t  is claimed that  
this A can be determined from physical constraints on mj  and n j ,  
which are led from that  i f ,  j !, and kJ compose an orthonormal 
system. 

This constraints are different for each respective models, and 
according to  (5), (6), and (7) they are given a s  followings, respec- 
tively. 

For Or thograp l l i c  P r o j e c t i o n  M o d e l  

F o r  Sca l ed  O r t h o g r a p h i c  P ro jec t io l i  M o d e l  

Sca l ed  O r t h o g r a p h i c  P r o j e c t i o n  M o d e l  For the  Scaled Or- 
thographic Projection model, as is the same case for Paraperspec- 
tive Projection model, if A satisfies its constraints of (14) (or con- 
straints of (15) for Paraperspective Projection ), k~ also satisfies 
the condition with any real number k .  This means there remains 
an ambiguity of absolute size of the object or absolute distance to 
the object, that  is, if we limit A to  be symmetry, it is still up to a 
scale. 

Then we minimize one of the next two crit.eria under the condi- 
tion of det(A) = 1. 

F o r  P a r a p e r s p e c t i v e  P r o j o c t i o ~ l  M o d e l  
P a r a p e r s p e c t i v e  P r o j e c t i o n  M o d e l  As is the same case of 

m7mf _TnJ m m X ~  - -  the Scaled Orthographic Projection model, we minimize the next 
1 + - 2 + C y  c r j  cyj (- ;) = l F  (I5) criterion under the condition of det(A) = I .  

METRIC CONSTRAINTS FOR NOR- 
MALIZATION J = I  

Formulation of the constraints 

Firstly, we formulate the metric constraints for respective models in 
common forms, and introduce criteria for the respective normaliza- 
tions for the models of Scaled Orthographic Projection and P a r a  
perspective Projection , besides Orthographic Projection model. 

The problem here is to dcter~nine unknown lt~atrlx A ~ l ~ t r o d ~ ~ c c ~ l  
in the previous section. We described the constraints on A as (13), 

Minimization of the criteria 

(14), and (15) for respective models. But they are not sufficient To minimize gl and g2, next three algorithms were used 
conditions to determine A uniquely, because, if A satisfies one of 
them, then AU satisfies it with any orthonormal matrix U .  This Powell's method (ConJugflte Dtrectton Method) 

means that  the recovered camera pose is not absolute and open to  
rotation and mirror symmetry. 

On the other ha"d, for ally matrix A,  there exists an ortlionor- 
ma1 matrix U and AU is symmet.ry. Therefore, for the solution of 
the constraints (13), (14), and (15), we can limit A to  be  symmetry. 

Then we denote 

and find z, for A ,  which minimize a criterion on the metric con- 
strains. 

Criterion on the constraints 

In our experiments, the criterion on the metric co~istraints for the 
respective models are given as  followings. 

Or t l l og raph ic  P r o j e c t i o n  M o d e l  The solution A or x given as 
(16) or (17) is uniquely determined for the condition of constraint 
(13) if noise free. Then we i~itroduce two types of criterion on the 
constraint of (13) as 

F R P R  algorithm (Con~agale  Gmdtent Method) 

D F P  algorithm (qrrast-Netoton Methodor Vartabk h4rtnc hldhod 

1 
which are offered in many numerical software packages. 

For the conditional (det,(A) - 1 = 0) minimizat,ion of g3, 94, and 
gg, the algorithm was the Lagrange's method of indeterminate mul- 
tiplier, where the  substantial minimization were carried out with 
above mentioned F R P R  algorithm and D F P  algorithm. 

EXPERIMENTAL RESULTS 

Experimental Simulation 

The experiments here is t o  evaluate the performance improvements 
by introducing more sophisticated projection models, the Scaled 
Orthographic Projection and the Paraperspective Projection . 

The  first simulation was for the  object of ten random points 
distributed within a rectangular parallelepiped. The readings of the 
image coordinates of these points were added with some Gaussian 
noise. 

These situations are listed in T a b l e  1 with other assumed 
parameters. The details and the  results for other set-up conditio~is 
are reported in [4]. 

The accuracies of the object shape reconstruction were evalu- 
ated using next error amounts. We denote the original true length 
between a pair of points p, q (p  < q) with dpq , and its recon- 
structed length with zpq . Tha t  is, denoting the true shape matrix 
with S = [a], . . . , ap] ,and its reconstruction with .? = F1, . . . , Zp], 
we have 



Table 2: The  reconstruction results of point object distributed 
within thick depth. The  camera was controlled with fixed-eye move- 
ment. 

Table 1: Basic set-up of the simulations. 
item 

Object 

Number of points 
Projection 

Image error 
Number of frames 
Camera distance 

Focal length 
Pixel size 

~ P P  = IldP - 8,Il 

ZP, = IlSP - % l l  
P , 9 E  { l , . . . , P )  , p < q  

We consider the  ratio of them 

values 
Randomly distril)uted points within 

50cm x 50cm x 5cm 
P = 10 

Perspective 
Gaussian, with ave. 0, s.d. 0.25pixels 

F = 5,6,10,20,40 
3.0m (constant) 
llaal = 20mm 

p = 9.28pm (both in z and y) 

Its average F and the variance a: can be expressed as  

Shape 
Error e 

0.0359 
0.0361 
0.0366 
0.0370 
0.0372 
0.0379 
0.0382 
0.0387 
0.0390 
0.0392 
0.0878 
0.0941 
0.0971 
0.2783 
0.1595 

If this variance a: is small, the reconstruction can be said to 
be well performed. To compare the results which have different 
average F, we define the shape reconstruction e r r o r  as 

Frame 
# F 

5 
6 

10 
20 
40 
5 
6 

10 
20 
40 
5 
6 

10 
20 
40 

Solution 

and we conclude that ,  the smaller this value was, the better accu- 
racy we obtained. 

The experimental results are shown in t,ables of T a b l e  2. 
Other than this, we have obtained many results of experimental 

simulations. Here, we summarize on on the reconstruction accura- 
cies with respect t o  the conditions. 

Model 

Orthographic 

Projection 

Scaled 
Orthographic 

Projection 

Paraperspective 

Projection 

Accuracies  w i t h  r e s p e c t  t o  t h e  p ro j ec t ion  m o d e l s  The model 
which achieved the highest accuracy was the Orthographic Pro- 
jection model. The  next was by Scaled Orthographic Projec- 
tion model, then Paraperspective Projection model. This order 
is thought t o  be caused by the weakness of the metric constraints 
on the respective models. 

Accuracies  w i t h  r e s p e c t  t o  t l ~ e  p ro j ec t ion  mode l s  The model 
which achieved the highest accuracy was the Orthographic Pr- 
jection model. The next was by Scaled Orthographic Projec- 
tion model, then Paraperspective Projection model. This order 
is thought t o  be caused by the weakness of the metric constraints 
on the respective models. 

This is a kind of irony! ; Paraperspective Projection model has 
the highest fidelity t o  the true perspective projection among the 
models, next is Scaled Orthographic Projection model, and then 
Orthographic Projection model. 

Criterion 

91 
gl 
91 
91 
91 
93 
93 
g3 
Q3 

93 
9s 
gs 
9s 
Q5 

95 

Accuracies  w i t h  r e spec t  t o  t h e  n u m b e r  o f  f r a m e s  Gener- 
ally, the minimum sufficient number of image frames were 5. In 
some case the accuracy was improved by using a few more frames. 
However, the  model approximation error have not be overcome by 
increasing the number of frames. 

Minimization 

F R P R  
F R P R  
Powell 
F R P R  
Powell 
F R P R  
F R P R  
F R P R  
F R P R  
F R P R  
F R P R  
F R P R  
F R P R  
D F P  

F R P R  

Accuracies  w i t h  r e spec t  t o  t h e  c a m e r a  m o v e m e n t  In the 
simulations, we employed fixed-eye control and random movements. 
The accuracy of the camera pose recovery was higher for the fixed- 
eye control than the random movement. But,  t.he accuracy of the 
object shape reconstruction was almost same among both move- 
ments. 

Accuracies  wit11 r e s p e c t  t o  t h e  d e p t h  o f  o b j e c t  When ob- 
ject feature points were distributed within thin range along the 
eye-line of camera, higher accuracy of the shape reconstruction was 
achieved. This can be concluded intuitively from the properties of 
the approximation models of the projection. 

APPLICATION FOR REAL 
ENDOSCOPE IMAGES 

We show results of shape reconstruction from real image sequence 
of endoscope in human stomach. For this case, its actual shape and 
movement of the endoscope camera could not be measured and were 
unknown. 10 frames in the sequence were used and 9 feature points 
were traced in the every image frames. A part of inner wall shape 
was reconstructed. 

Fig.4 is a part of the image sequence. 
The reconstruction was done with Orthographic Projection 

model, the criterion g l ( z ) ,  and the conjugate gradient method for 
minimization. The obtained 3-D positions of these feature points 
are shown in Fig.5. Fig.6 shows interpolated surface of these 3D 
positions of the reconstructed 9 feature points with 8th degree poly- 
nomial surface. The true shape could not known, but a shape of 
concave inner wall of stomach was observed. 

CONCLUSIONS 

Many kinds of extensive experiments to evaluate the performance 
improvements by introducing these models and criteria for them 
are reported by using synthetic simulation images and real images. 
The summary of the experimental results includes : The model 
which achieve the highest accuracy was the Orhtographic Projec- 
tion model. Generally, the minimum sufficient number of image 
frames were 5 ,  and in some rase the accuracy was improved by us- 
ing a few more frames. The accuracy of the camera pose recovery 
was higher for the fixed-eye control than the random movement, 
but the accuracy of the object shape reconstruction was almost 
same among both movements. When object feature points were 
distributed within thin range along the eye-line of camera, higher 
accuracy of the shape reconstruction wrts achieved. 

We conclude these features promise feasibility t o  reconstruct 
3-D shape from endoscope image sequences. 



811, l , ' , l , , < ,  lllll, l t < , l l l ~ ~ .  

Figure 5: Reconstructed shape of inner wall of human stomach 
Fignre 4: A part of image sequrnce taken wit.11 an endoscope in human 
st~omach. 
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