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Abstract

This paper studies the problem of reconstructing a planar
surface by observing multiple feature points that are known
to be coplanar in the scene. This paper presents a direct
method for reconstructing a planar surface by applying the
principle of maximum likelihood estimation based on geo-
metric constraints and a statistical model of image noise.
The significant fact about our method is that not only the
3-D position of the surface is reconstructed accurately but
its reliability is also computed quantitatively.

1 Introduction

Stereo is one of the most fundamental means of 3-D
sensing from images and is widely used as a visual sen-
sor for autonomous navigation of robots [1, 7]. In the
past, the study of stereo has mainly focused on the cor-
respondence detection between the two images. How-
ever various other issues arise when we reconstruct 3-D
from detected correspondences. First of all, the 3-D re-
construction should be aceurate. Hence, we must max-
imize the accuracy by optimization techniques based
on the statistical characteristic of image noise. At the
same time, the reliability of the reconstructed 3-1 must
be evaluated [6]. If the errors involved in the recon-
structed 3-D cannot be estimated, robots cannot take
appropriate actions to archive given tasks effectively.
This paper presents a new theory for reconstructing
planar surfaces by stereo in a statistically optimal way
and evaluating the reliability of the reconstruction in
quantitative terms.

In order to reconstruct an optimal planar surface,
we introduce the principle of mazimum likelihood esti-
mation and derive a scheme of nonlinear optimization
for optimal estimations. At the same time, we derive
a theoretical lower bound on the attainable accuracy of
estimation. In order to compute the optimal solution,
we use a numerical scheme called renormalization [3].
By numerical simulation, we show that the obtained so-
lution alimost attains the theoretical lower bound on ac-
curacy. This means that we can quantitatively predict
the reliability of the reconstructed surfaces. This has
a greal significance in robotics applications of stereo.

2 Camera and Noise Model
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Figure 1: The camera model and the coordinates sys-
tems.

Let {P,}.a = 1...., N, be feature points on a planar
surface in the scene. Let m be the unit surface normal
to the plane, and d the distance of it from the origin
0. We call {n,d} the surface parameters of the plane.
As illustrated in Fig. 1, we take the first camera as
the reference coordinate system and place the second
camera in a position obtlained by translating the first
camera by vector h and rotating it around the center
of the lens by matrix R. We call {R, h} the motion
(or stereo) parameters. The iwo cameras may have
different focal lengths f and ['.

Let {(za,¥0)}ia = 1,...,1 N. be the image coor-
dinates of the feature points projected on t]u image
plane of the first camera, and {(z], ¥ )} a=1,...,/ N,

those for the second camera. We use the fulltmmg 3-
dimensional vectors to represent them:

a:‘,:(%, ”7 |)r. 2! = (%— ”T 1)T. (1)

In the absence of noise, the vectors @, and @', the
motion parameters {R, h}. and the surface parame-
ters {n,d} satisfy the following relation (we omit the
derivation [4]):

T T .
2. x Az, =0, A= B (' —dl) ,d”- (2)
2 1 +d?

Here, ax A is the matrix defined by the vector product
of 3-dimensional vector @ and each column of 3 x3-

matrix A. Let B, and v be a 3 x4-matrix and a
4-dimensional vector. respectively, defined by

B, = (z,x RTha] =, xR'z,), (3)
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Then, Eq. (2) is rewritten in the following form:
B,v =0. (5)

In the presence of noise, vectors &, and @/ do not
necessarily satisfy Eq. (5). Write

(6)

where &, and &/, are the true values of @, and a,
respectively. We regard Az, and A/, as random vari-
ables that have means 0 and covariance matrices V[z,,]
and V([z! ], respectively [6]. The absolute level of image
noise is very difficult to estimate a priori. Let ¢ be the
average magnitude of noise, which is unknown. We call
it the noise level. On the other hand, geometric charac-
teristics of image noise such as uniformity and isotropy
can be easily predicted, so we introduce the normal-
ized covariance matrices Vp[e,] and Vy[e! ], which are
assumed to be unknown, and express the covariance
matrices in the following form:

Viz, = Vila), Vizl) = Vala,).

. ' =1 ’
Ty =&, + Az, z,=2,+ Az,

(7)

3 Optimal Estimation

We apply marimum likelihood estimation for estimat-
ing an optimal value of v, First, we optimally correct
2, and z!, in the form

z, & =z — Az, (8)
so that Eq. (5) is satisfied for a fixed value of v. If
image noise has a Gaussian distribution, this correction
is done for each a by the optimization based on the

Mahalanebis distance [4] in the form

Jo = (Ato.%[-’e(.]'Ata)
+ (Azl, Vo[zL]”Az!) — min,

=&y — Azcn

(9)

where Vj[z]™ is the generalized inverse of Vj[x] and
(a,b) denotes the inner product of vectors @ and b.
The residual J, obtained by substituting the resulting
optimal values &, and &, is a function of ¥, so we
rewrite it as J,[v] and seek an optimal value of ¥ by
the minimization

EN: Jalv] — min, (10)
This minimization is ;ewritten in the form
Iyl = %‘;g(Bav, W) Bv) -, (1)
where
Wa(v) = (Vu[Bou])l_. (12)

The notation (-); means computing the generalized
inverse after projecting the matrix to a matrix of rank
r. In Eq.(12), Vy[B,#] is the matrix given in the fol-
lowing form [4]:

Vo[Bov] = &, x AVylza]AT x &
+ (Aa—ra) X VO[I:-] X (Aicr]

+ [Vo[e] x AVy[z.]AT]. (13)
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Here, the vector product A x a of a 3 x 3-matrix A
and a 3-dimensional vector @ is a 3 x 3-matrix defined
by

Axa=(axAT)T, (14)

The exterior product [A x B] of 3 x 3-matrices A and
B is a 3 x 3-matrix defined by

3

b3

klmn=1

{A x Bi'J = ftki'menAkm Bi'm “5)

where ¢, is the Eddington’s epsilon, taking values 1,
—1, and 0 if (27k) is obtained from (123) by an even
permutation, an odd permutation, and otherwise, re-

spectively.
Let v be the optimal solution of the minimization
(11) under the constraint r| = 1 . It can be shown

that the theoretical covariance matrix of the optimal
solution ¥ has form

Vil = (3 PuB]

a=1

Wu(")BnPu) y o (16)
where Py = I — vv" (we omit the proof [4]).

4 Renormalization

If W,(v) is replaced by a constant matrix W, the
function J[v] in Eq. (11) is written in the following
form:

Jv| = (v, Mv).

Here, M is the 4 x 4-moment matriz defined by

(17)

Z BW,_B,. (18)

n-_l

The solution that minimizes Eq. (17) under the con-
straint |v] = 1 is given by the unit eigenvector for the
smallest eigenvalue of M. It appears at first sight that
the optimal solution of Eq. (11) is obtained by letting
W, = W,(vy) for an appropriate estimate ¢ and
minimizing Eq. (17). Using the resulting solution vy,
we can update the weight by letting W, = W, ()
and iterate this process until convergence. However,
such iterations introduce statistical bias into the solu-
tion [3]. This is shown as follows.
Define 4 x 4-matrices N") and N® by

N 7 ((h Xk Volza]+ (B, Y oh)zoz])
T\ AL ((Volza] X k)T +(2a, Y ah)z])
.\.): (Volza] X ah+ (20, Y o h)mﬂ})

sz.,uvnlznl Xo)+(@a, Yoza) )’
N@® — ( Za— (h. Y h)Vi[z,]
Sl vu{ z.)Y k)T

_ft"- =1 D[ma]anh )
Jl\fzo=l(%[zﬂ]:yu)

where X, and Y, are 3 x 3-matrices defined, respec-
tively, by

(19)

X.=R(z xW,xz )R, (20)



Y. =R[W, x Vy[,]|R", (21)

and the inner product {A; B) of 3 x 3-matrices A and
B is defined by

3
(A;B) = 5 Ai;Bij. (22)
=1
Define the unbiased moment matric M by
M=M-&NW 4 NG, (23)

Hence, we can obtain an unbiased estimate of v il we
use M instead of M. However, the noise level ¢ is
unknown. In order to resolve this difficulty, we intro-
duce a numerical scheme called renormalization, which
treats ¢* as a variable. The procedure for renormaliza-
tion is stated as follows [3, 4, 6]:

l. Lete=0and W, =T, a=1,...,N.
2. Compute the moment matrix M defined by Eq. (18).

3. Compute the 4 x 4-matrices N and N defined by
Egs. (19), and compute the following 4 x 4-matrix

M=M-eNW 4 2ANG), (24)

4. Compute the smallest eigenvalue A of M and the cor-
responding unit eigenvector v.

5 If A = 0, return . ¢ and M. Otherwise, update ¢
and W, as follows:

D = (v, NDy) = 2¢(v, NDp))’

—AMw. NPy), (25)
if D>0,
(v, NWy) — 2¢(0, N®p) — /D
c—c+ ; s
E{V.Nmu]
. A
if D<o, t‘—(‘+m. (26)
A= R(h(v1,v2,v3) + ad), (27)
W, — (a::, x AVylz,]AT x =/,
+ (Az,) x Volza] % (Ax,)
+ [Volzl,] x AVolzl]AT]) . (28)

6. Go back to Step 2.

If the vector ¥ is obtained, we can compute the sur-
face parameters {n,d} of the planar surface in the form
form

Vy

n =N, v, '], d=- (29)

- vi
The symbol N[-] denotes normalization into a unit vec-
tor. An unbiased estimate of the squared noise level ¢
is given in the following form [4]:

2 e

CT1-3N
The covariance matrix V[w] given by Eq. (16) is ap-
proximated by

(30)

a2

{ - -
Viy] = V(Mla' (31)
Thus, we can compute by renormalization not only an
optimal estimate of » but also an estimate of the un-
known noise level € and the reliability of the computed
estimate v.
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Figure 2: Left and right images with noise.

Our method

Least-squarcs method

Figure 3: Error vectors.

5 Experiment
Numerical Simulation

We illustrate the effectiveness of our method by do-
ing numerical simulation. We place a grid pattern in a
3-D space and regard the grid points as feature points.
The two cameras are assumed to have the same focal
length f = 600 (pixels). After projecting the feature
points onto the image planes, we add as image noise
a Gaussian random number with standard deviation
3 (pixels) to each of the image coordinates indepen-
dently. Hence, the noise level ¢ is equal to 1/200, and
Volza] = Volz!] = diag(1,1,0) (the diagonal matrix
with 1, 1, 0 as the diagonal elements in that order).
However, the value of ¢ is regarded as an unknown in
the simulation. Fig. 2 shows the left and right images.
The result obtained by our method is shown in Fig. 4.
For the sake of comparison, we show the result obtained
by the usual least-squares fitting (as described in Sec-
tion 1) in the same figure. We can observe that our
method produces better results than the least-squares
method.

Analysis of Error Behavior

We define the error vector by

Au = Pi(n—n)+ EI—J—dﬁ, (32)
where we put Py = I — ain” and {n.,d} are the true
surface parameters. From the theoretical covariance
matrix V[r] given by Eq. (16), the covariance matrix
V[u] of the error vector is computed in the following
form (we omit the derivation [4]):

Viu] = V[n]+ 3( Vin,dln" +nV[n.d")+ %1"’{:{]1‘111"'.

(33)

We repeat the computation 100 times, each time
using different noise, and plot the error vector three-
dimensionally in Fig. 3. The ellipsoids in the figures
indicate the theoretical standard deviation in each ori-
entation computed from the covariance matrix given by
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Figure 4: Reconstructed planar surface

Figure 5: Reliability of 3-D reconstruction.

Eq. (16). We can observe that the solution computed
by the least-squares method is statistically biased. In
contrast, our solution is observed to be statistically un-
biased and almost attains the theoretical lower bound.

Reliability of 3-D Reconstruction

The unit eigenvector €,,,, of the covariance matrix
V| for the largest eigenvalue Apax indicates the ori-
entation of the most likely deviation of ¥ from its true
value, and /A . indicates the standard deviation in
that orientation. Hence, we can visualize the reliabil-
ity of the reconstructed planar surface by displaying
the two planes corresponding to the two vectors

v* = N[o 4\ omabmad
v N[# = \f Amax€ nas)-

The covariance matrix V(] is computed by the ap-
proximation (31) from the data alone. We call these
two planes the primary deviation pair. The primary de-
viation pair computed from Fig. 2 is shown in Fig. 5,
where the reconstructed grid pattern is drawn in solid
lines and the primary deviation pair is drawn in broken
lines,

Il

]

(34)

Real-Image Example

Fig. 6 shows two stereo images. The left figure in
Fig. 7 shows a grid pattern defined by feature points
(corners of the windows) extracted from the left im-
age of Fig. 6. The motion parameters are obtained by
the optimal camera calibration system [5]. The right

Figure 6: Real stereo images.
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relisbility

Left grid image

Figure 7: Feature points extracted from the left image
and the reliability of its 3-D reconstruction.

figure in Fig. 6 shows the computed 3-D shape. The
reconstructed grid pattern is displayed in solid lines,
and the primary deviation pair is displayed in broken
lines. Thus, we can visualize the reliability of 3-D re-
construction without using any knowledge of the mag-
nitude of image noise. In this experiment, the base line
||| is very short as compared with the distance to the
building surface (approximately 1/16). Hence, the re-
liability of 3-D reconstruction is very low. It is very
important to evaluate the reliability of 3-1) sensing in
real applications of stereo for robot operations, because
otherwise robots are unable to take appropriate actions
to archive given tasks effectively.

6 Conclusion

We have presented a direct reconstruction method for
reconstructing a planar surface by stereo vision. By
doing numerical simulation, we have shown that the
obtained solution almost attains the theoretical lower
bound on accuracy. Our method can not only recon-
struct the optimal estimate but also allows us to eval-
uate the reliability of the computed estimate quantita-
tively. This has a great significance in robot operations
in real environments.
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