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ABSTRACT what: color, motlon 
what, where? - where: depth and reglon 

This paper describes a statistical integration algorithm for 
color, motion and stereo disparity, and introduces a real- 
time stereo system that can tell us where and what ob- 
jects are moving. Regarding the integration algorithm, 
motion estimation and depth estimation are simultane- 
ously performed by a clustering process based on motion, 
stereo disparity, color, and pixel position. As a result of 
the clustering, an image is decomposed into region frag- rete 
ments. Each fragment is characterized by distribution PIa 
parameters of spatiotemporal intensity gradients, stereo 
difference, color and pixel positions. Motion vectors and 
stereo disparities for each fragment are obtained from 
those distribution parameters. The real-time stereo sys- 
tem can view the objects with the distribution parameters 
over frames. The implementation shows that we can uti- 
lize the proposed algorithm in real-time applications such Figure 1: Stereo system. 
as surveillance and human computer interaction. 

INTRODUCTION 

Detecting a moving object is important for a wide range 
of applications from surveillance to  human-computer in- 
teraction. In this paper, we introduce a real-time stereo 
system that can tell us where and what objects are mov- 
ing. As depicted in Fig. 1, with our system, an ob- 
ject of attention (e.g., object B) can be easily discrimi- 
nated from background objects (object A) by color, mo- 
tion, or depth. The system can provide 'Lwhat-wheren 
information, in real time, associated with color, motion 
and depth of segmented regions. Those are strong clues 
for selectively detecting a moving object. One state- 
of-the-art approach to "vision interface1' uses multiple 
templates[DP93, TLT931. Although the multiple tem- 
plates method allows the machine to perform sophisti- 
cated tasks such as gesture recognition and face identifi- 
cation, it requires restrictive conditions for background, 

The issues discussed in this paper are how we integrate 
stereo, motion and color, and how we implement a real- 
time system. In the following sections, we will discuss 
these issues. 

INTEGRATION ALGORITHM 
In our approach, an image is decomposed into region 
fragments by a clustering process (see Fig. 2). Each 
fragment is characterized by distribution parameters of 
colors, pixel positions, stereo difference and spatiotem- 
poral intensity gradients. Then assuming the uniformity 
of the color, disparity and motion in a region fragment, 
a 2D motion vector and a stereo disparity (i.e., inverse of 
depth) for each fragment are obtained from the distribu- 
tion parameters of the multidimensional features. 

The features of our approach depicted in Fig.2 are: 

views and bootstraps. On the other hand, we believe that integration of color, motion and stereo 
extracting the clues in a robust bottom-up manner can 

: Segmentation, motion estimation and depth esti- 
perform typical visual tasks in the above applications. mation are simultaneously performed as parameter 

An algorithm proposed in the next section is an exten- estimation of joint probability densities of color, mo- 
sion of the integration algorithm[ES93] that one of the tion, disparity and pixel positions. 
authors has already proposed for 2D motion estimation. - -  - 
We introduce an expansion for dealing with stereo image on-line processing a n d  dynamics  : The clustering 
sequences. process is realized as a competitive learning[RZ86, 



vectors x for each region fragment w; with multivariate 
normal density N3(x;, Xi) where xi, Xi are the mean vec- 

Figure 2: Clustering with nine-dimensional feature map. 

.+, 

Figure 3: Four feature spaces. 

competitive learnlng 
(clusterlna) 

KohgO]. Competitive learning provides a novel way 
for real time on-line computation of the parame- 
ter estimate. Moreover, sample-wise optimization 
ensures dynamics of the parameters over successive 
frames. 

Firstly we briefly discuss assumptions and definitions 
of our method. Image features at  each pixel consist 
of color vectors x (i.e., RGB values), pixel positions 
p = (t, q)' (i.e., column,row) , spatiotemporal intensity 
gradients g = (g, E ,  g)', and w = (g, A I )  where I 
and A I  denote intensity of left image, intensity difference 
between left and right images. ( a .  .)* is matrix transpose 
operator. We use the left image for the parameter esti- 
mation. Let the left image R that is to  be described be 
represented by c classes of pixels (i.e., region fragment) 
such that R = {wI,w2,. . . , w,), where w;, i = 1 ,2 , .  . . , c  
indicate the region fragments. 

At each region fragment, the following distributions 
are assumed independently (see Fig. 3). 

color: We model the distribution of measured color 

tor and the 3 x 3 covariance matrix of the color vectors. 
position : We model the distribution of pixel posi- 

tions p for each region fragment with multivariate nor- 
mal density Nz(p;, P i )  where p i ,  Pi are the mean vector 
and the 2 x 2  covariance matrix of the distribution. The 
region fragment is approximated by an ellipse that has 
the same parameters p and Pi. We use the N2(pi, P i )  to 
approximate the density of p within the ellipse. 

motion: On the constant intensity assumption, ex- 
pansion of the total derivative of intensity I leads to the 
well-known gradient constraint eguation[HS81] described 
bv 

where u ,  v denote the image component velocity. Let 
u .  + v. + 1 denote the 2D motion vec- mi = (ui,ui, I ) ~ / J T  

tor of the fragment w;, Eq. 1 can be written as m f g  = 0. 
By assuming the 2D homogeneous image motion, we 
model the distribution of m:g for each region fragment 
with univariate normal density N(0, ST) described by 

s te reo  disparity: We treat disparity estimation as 
a kind of motion estimation[LK82] with the constraint 
that the camera moves along the ( axis, and assumes the 
equation: 

ar 
9;- + A I  = 0, at (3) 

where q is a stereo disparity. Let hi  = (q;, 1 ) ' / m  
denote the disparity vector of the fragment w;, Eq. 3 can 
be written as h f w  = 0. We model the distribution of hlw 
for each region fragment with univariate normal density 
N(0, c:) described by 

Let Gi and W; be the covariance matrices of g and w 
in w;. Owing to the above assumption, as depicted in 
the Fig.3 , m; and hi are obtained by normalizing the 
third eigenvector of G; and the second eigenvector of W ;  
respectively. Details are described in [ES93]. 

Here, the competitive learning in this work is roughly 
as follows: 

1. Assume a sequence of statistical samples of the fea- 
tures 
( ~ ( t ) ,  p(t), g(t),  w(t)), and their parameters {Bi(t) : 
ei = (ni(t),xi(t),~i(t),pi(t),Gi(t),Wi(t)),i = 
1 ,2 , .  . . , c), where t is the learning step. 

2. B;(O), i = 1,2,.  . . , c have been initialized by random 
selection. 

3. Sample (x(t), p(t), g(t), w(t)) is randomly selected 
from the feature map, and is simultaneously com- 
pared with each B;(t) a t  each successive instant of 



pipeline image processor MaxVideo 200 

Figure 4: System configuration. 

learning step, t = 1,2,3,.  . ., and then the best- 
matching 8;(t) is updated by the delta rules[RZ86] 
to match even closer to the current sample. 

Once the parameter sets are initialized, the step 3 is it- 
erated over successive frames. 

Assuming that the probability densities of x ,  p ,  m f g ,  
and h f w  are jointly normal and independent, we use a 
distance metric based on a log-likelihood as: 

d;(x, p ,  g ,  W) = (x - %;)'Xrl(x - xi)+ 
( p  - p;)'P;'(p - pi) + (mfg)'/s; + (hfw)'/c; +In IXiI Figure 5: Calibration procedure. 
+ In lPil + In ST + In C: for i = 1,2,. . . , c . 

(5) 
Using this metric, the pixel assignment to the region frag- minimizing the sum of absolute errors as depicted in Fig, 
ment is performed without setting any heuristic weight- 5. since the image warper of the ~ ~ t ~ ~ ~ b ~  can per- 
in9 coeficients. This metric enforces similarity of color) form second order transformations, the stereo difference 
locality of each region fragment) and the constmint sat- can be set exactly to zero at  any projection from the 
isfaction to the same 2D motion and stereo disparity. reference plane. A downhill simplex method[PFTV88, 
Altering 8; must be such that, if i = k is the in- pp.305) searches the minimal error parameters by con- 
dex of the best-matching region fragment w k ~  then the trolling the image warper iteratively. Using this image 
d k ( ~ ( t ) ~  ~ ( t ) , g ( t ) , ~ ( t ) )  is decreased, and all the other warping, we can qualitatively separate foregrnund objects 
parameter vectors 8i with i # k are left intact. Note from background objects with reference to a sign of dis- 
that our delta rules update not only the mean vectors parity. In Fig.1, for example, the region of object B has 
but also the covariance matrices such as Gi(t),Wi(t).  a positive disparity while the the region of object A has a 
In this way, parameters of the different region fragments negative disparity. DataCube performs the image warp- 
tend to b c ~ o m e  specifically tuned to input samples over ing and all differential operations at  about 20Hz using 
successive frames. The system produces the current es- an image M~~ video 200. H ~ ~ ~ ~ ~ ~ ,  the 
timates of the parameter sets every moment. petitive learning on a digital signal processor i860 takes 

rather long time. Consequently, the frame rate of feature 

IMPLEMENTATION map is 2 frames per second for 200 random sampling per 
frame. 

Fig. 4 illustrates the implementation on a "DataCube"', 
real-time image processor. In this implementation, color 
vector x consists of (Y, R-Y, B-Y) signals and the stereo EXPERIMENTS 
difference and the intensity gradients-are calculated from 

Fig.G(a) shows a typical indoor scene consisting of a chair 
Y signals. 

and a background wall. Prior to the experiment, a panel 
We apply an image warping to the right image so that 

was put just in front of the chair for the zero stereo dis- 
the stereo difference can be forced to be zero on the vir- parity calibration (See Fig.5). Fig. 6 (b) shows the clus- 
tual reference plane as depicted in Fig.1. This is be- tering result a t  the beginning of this experiment. The 
cause Eq. 3 is vulnerable to large disparities. Prior to 

figures from 6(b) to 8(b) were produced from the sys- 
the competitive learning, we can preset the transforma- tern's screen snap-shots. The ellipses illustrate the clus- 
tion(warping) parameters by putting a real panel and tered pixels, and their second moments are equal to Pi. 

'tproduct of Datacube Inc., U.S.A. The ellipses have two colors, white and black. The white 



ellipses indicate the region with positive disparity. On 
the other hand, as shown in this figure, the black ellipses 
indicate the region with negative disparity. That means 
the objects are farther away than they were in the refer- 
ence plane. Note that ellipses without a confident depth 
estimate are not drawn here (confidence is determined 
by examining the eigenvalues of Wi[ES93]). In Fig.7, a 
person enters the scene. He sits a t  the chair and swings 
from left to  right. The system detects him as foreground 
objects and indicates him as white ellipses as shown in 
(b). In addition, the system outputs the 2D motion vec- 
tors for each region. The short thick white lines starting 
from the centered dots indicate the 2D motion vectors. 
The mean motion vector of foreground regions is also 
indicated at  the top of this figure. In Fig. 8, another (a) input i111age (1,) S ~ S ~ V I I I  011t1)ut 
person gets into the scene. This time, however, he sits in 
the background. Although those two persons are wearing Figure 6: Early stage of the experiment. 

the same color jackets, the system can discriminate the 
foreground person from the other person. 

mean motion vector 

CONCLUSION 
This paper has presented our new description method 
for moving stereo images. What we propose in this pa- 
per is not only an integration algorithm for color, motion 
and stereo disparity but also a real-time implementation 
scheme that enables us to utilize the algorithm in real- 
time applications such as surveillance and human com- 
puter interaction. Our experiments show the advantages 
of that algorithm. 
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