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Abstract: This paper presents a technique for dis- 
parity selection in the context of camera vergence in 
binocular pursuit. For vergence control in binocular 
pursuit, it is a crucial problem to find a disparity 
which is corresponding to the target among multi- 
ple disparities generally observed in a scene. To solve 
the problem of the selection, we propose an approach 
based on histogramming the disparities obtained from 
a phase-based disparity estimation algorithm. The idea 
is to slice the scene using the disparity histogram 
so that only the target remains. The slice is chosen 
around a peak in the histogram, a peak which is found 
by keeping track of the peak as it moves in time, us- 
ing prediction of the targets disparity and location in 
the image. The tracking of the peak enables robustness 
against any dominant objects in the scene. The ap- 
proach is investigated through experiments and shown 
to work appropriately. 
Keywords: disparity, vergence, phase-based algo- 
rithm, disparity selection, binocular pursuit 

1 Introduction 

Pursuit of a target using a stereo camera system re- 
quires mechanisms for version to track the target on 
the horopter, and vergence to fixate it in depth (see 
Fig.1). Since those two mechanisms are orthogonal to 
each other, pursuit can be performed by controlling 
them independently. The research described here is 
concerned with the mechanism for vergence. To keep 
the cameras verged on a target, the vergence system 
must measure the current vergence error. We utilize 
binocular disparity as the most useful visual cue to 
vergence, because of the straightforward mapping into 
vergence error. A crucial problem in applying this to- 
gether with pursuit is to estimate the disparity corre- 
sponding to the target, while multiple disparities are 
observed due to other objects in the scene. I.e., a se- 
lection process has to take place among the multiple 
disparities observed in the image. 

The objective of the work presented here is to solve 
the problem of disparity selection. Typical for this 
problem is that not only do we want to estimate a 
disparity at  each instance of time, but this disparity 
should also be consistent over time and with the target 

location, hence disparity selection is tightly coupled 
with pursuit. As the disparity estimator a method 
which is based on the output phase of bandpass fil- 
ters [San88] [WK89] is employed. The advantage of 
the method is in the computational cost, the stabil- 
ity against varying lighting condition and especially 
in the direct localization of the disparity estimation. 
Provided with a disparity map from the phasebased 
algorithm, we introduce an approach to select the dis- 
parity of the target by forming a histogram and select- 
ing the corresponding peak. The performance of the 
whole scheme is investigated through experiments. 

The article comprises of Section 2, briefly describ- 
ing the phase-based algorithm, and Section 3, where 
the method of disparity selection is presented, fol- 
lowed by the experiments shown in Section 4. A con- 
clusion is given in Section 5. The presented techniques 
are part of the framework (see Fig.2) which is to per- 
form real-time smooth pursuit on our vision system, 
the KTH-head [PE92]. 
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Figure 1: Geometry of binocular pursuit. 
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Figure 2: A diagram of the framework. Presented in the 
paper is the part marked by the dashed line. 



2 Phase-based disparity estimation 

The fundamental concept of the phase-based ap- 
proach is to convolve the left and right stereo images 
with a complex filter, such as a Gabor filter, and then 
estimate the local disparity by computing the com- 
plex phase difference of the filter output. As the local 
shift between stereo images is linearly proportional to 
the local phase difference, a disparity estimate is ob- 
tained a t  each point in the image. 

Disparity map 
Let a complex filter be convolved with the .  left 
and right images respectively and produce x ( x ,  y) 
and Vr(x, y). Since the computation of the convo- 
lution in Fourier domain has contribution mainly 
from the neighborhood of the central filter frequency 
w[radian/pixel], the convolution products are approx- 
imately related to each other by phase shift, which 
arises from the spatial shift (i.e. disparity): 

K(x,  y) % e j w D ( x , y )  . V,(x, y). (1) 

D(x,  y) denotes disparity at  (x, y) in the image. The 
relation then leads to the disparity through the com- 
putation of the complex phase difference: 

This is strictly valid only for filters of infinitesimal 
bandwidth, arising directly from the Fourier shift 
theorem[San88]. 

Confidence map 
In order to check the feasibility of the estimated dis- 
parity and threshold unreliable estimation, we also 
c0mput.e a confidence value defined on the basis of 
the magnitude of the convolution product: 

Complex filter 
While the complex filter has to satisfy several con- 
straints and several different filters have been pro- 
posed accordingly [Wes92], we employ discrete ap- 
proximations to the first and second derivatives 
because of their computational simplicity, that is 
(-1,0,1) and (1,0,  -2,0,  I) ,  thus sacrificing accu- 
racy. The frequency of the filter is regarded as w = 
a/2[radian/pixel]. The maximum disparity which a 
filter can accurately determine is limited to one-half 
the wavelength of filter. To handle larger disparities, 
a coarse-to-fine technique can be employed [MUE93]. 

Fig.3 shows an example of a disparity and confi- 
dence map that is used in the disparity selection in 
the next section. 

(a)  l,cft image (1))ltight image 

Figure 3: Example of a disparity and confidence map. 
(a)(b) A sample stereo image pair. The fixation point is in 
the center around the corner of the book. (c) The disparity 
map. Estimation is valid only where the corresponding 
confidence is above a threshold. The higher the gray scale 
is, the larger the disparity estimation is (further away in 
the scene). (d) The confidence map. The higher the gray 
scale is, the higher the confidence value is. 

3 Disparity selection 

In a scene where several objects exist a t  different 
depths, multiple disparities are observed. The objec- 
tive here is to select the one that is corresponding 
to the target in binocular pursuit. Other reserchers 
have reported related work, e.g. zero-disparity filter- 
ing together with cepstral-filtering and vergence con- 
trol in smooth pursuit [CB92], also disparity estima- 
tion by cepstral-filtering and back projection for dis- 
parity selection in vergence on objects in static scenes 
[TOM94]. For the specific purpose of binocular pur- 
suit, it is desirable to have an approach which utilizes 
both binocular and monocular ques in time, and is 
stable regardless of the size and absolute location of 
the target. We also argue that we can sacrify accuracy 
in the disparity estimation and in turn gain speed, 
in which accurate vergence and pursuit is obtained 
quickly in time rather than in one shot. The selec- 
tion process presented below, together with a parallel1 
motion estimation process, seems to  be promising in 
these respects. 

Histogram-based selection 
Based on a disparity map, D(x, Y), and a confidence 
map, C(x ,  y), we compute a histogram H ( D d )  with 



respect to the discrete disparities Dd: 

H(Dd)  is defined as the sum of the confidence val- 
ues a t  the pixels where the disparity is estimated to 
Dd. Multiple peaks therefore appear in the histogram 
corresponding to the different disparities1. Given a 
prediction of what disparity the target should have, 
the closest peak can be selected as the estimate of the 
target disparity. 

Fig.4 (a) is an example of such a histogram, p r e  
duced based on the disparity and confidence map 
shown previously in Fig.3. Four large peaks are ob- 
served in the histogram corresponding to different 
parts of the image lying a t  different depths; the head 
of the man, the hand, the lower and the upper part 
of the book. A neighborhood around a peak2 in the 
disparity histogram is back projected into the sample 
image, see Fig.3 (b). The selected peak turned out to 
arise from the lower part of the book. 

Prediction 
An important feature of the disparity selection process 
is the disparity prediction, that is, given an initial dis- 
parity of the target the consequent selection at  each 
instant in time is based on a prediction of the dispar- 
ity. For computational simplicity a linear predictor is 
used with a weighting factor a3: 

Ds(k) and Dp(k) represent the selected and predicted 
disparity a t  frame number k while P(k) denotes the 
predicted change. A crucial problem is the case when 
the peak of interest disappears temporarily in time. 
This could happen in a scene where more than one 
object simultaneously come close in depth. To han- 
dle such a situation, information about the location 
of the target is incorporated in the scheme. One could 
try to use location information provided by the selec- 
tion process itself, but the approach we are pursuing 
utilizes a parallel1 motion estimation process. How- 
ever, this work is outside the scope of this paper. We 
only mention briefly that the previously selected tar- 
get location provide areas for motion estimation, and 
that the subsequent selection of disparity should give 
consistent estimations of target location. 

' A threshold is used to eliminate small peaks due to noise. 
'The size of the slot taken around the selected peak is 2 

pixels, which corresponds to several centimeter in the distance. 
3~ 5 a 5 1 ,  a is set to be 0.2 in the experiments. 
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Figure 4: Example of disparity selection. (a) Histogram. 
Horizontal axis for disparity estimates. Vertical axis for 
sum of the confidence values. (b) Back projection of lower 
part of the book. 

4 Experiments 

Experiments have been performed on some image 
sequences so as to demonstrate the behavior of the 
presented scheme over time. Two differnt sequences 
have been taken by a binocular camera system whose 
gaze direction was controlled manually while the ver- 
gence angle was fixed. Fig.5 shows a sequence where 
the camera tracks a person passing behind an object. 
The head of the man is the target, which is kept to 
be in the center throughout the sequence. Fig.6, on 
the other hand, shows the situation where the camera 
gets stuck on the object occluding the target. This is 
to show that if a system for some reason would get 
stuck on a occluding object, the disparity selection 
process would have the ability to cope with such a 
situation, and thus a complete system including dis- 
parity selection could deal with such a situation. The 
frame rate is 40 msec in both cases one image is shown 
for every tenth frame. 

With the initial disparity corresponding to the tar- 
get, in both experiments, the histogram is generated 
a t  each frame in the sequences and disparity selec- 
tion takes place accordingly. Marked dark is the part 
where the disparity estimation is around the selected 
peak. The edge on the face in Fig.5 (d) Fig.6 (a) is not 
marked since that part is occluded in the other image. 
Dark marks are also observed in irrelevant parts of 
the image due to erroneous disparity estimation. As a 
whole, however, the selected disparity remains on the 
target over time. Note especially how the selected dis- 
parity still sticks to the target even when the target 
is mainly occluded, or has halfaway disappeard out 
of the image (see Fig.6 (c)(d)). A simple selection of 
the highest peak would not do (see Fig. 7), and surely 
many, if not all, of todays monocular pursuit systems 
would fail. 



(a)  frame 0 (b) frame 10 (c) frame 20 (d)  frame 30 

Figure 5: Experiment I. The target is kept to be in the center. Back projection on the right input image is marked dark. 
1 frame = 40 msec. 

( a )  frame 0 ( h )  frame 10 (c )  frame 20 (d) frame :(O 

Figure 6: Experiment 11. The target in the center is taken over by a occluding object. Back projection on the 
left input image is marked dark. 1 frame = 40 msec. 
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(a) frame 0 (b) frame 20 

Figure 7: Histograms in Experiment 11. (a) The target 
corresponds to the large peak. (b) The target corresponds 
to the small peak to the right of the large. 

5 Conclusion 

In this article, we have considered the problem of 
disparity selection, a vital component of successful 
camera vergence in binocular pursuit, in which also 
the incorporation of time in disparity estimation plays 
a central role in the success. Based on the disparity 
and confidence maps produced by the phase-based al- 
gorithm, a histogram-based approach utilizing a peak 
predictor has been introduced. Through the experi- 
ments it can be seen that the scheme works well, es- 

pecially in terms of the robustness during occlusion. 
Future work will be directed (i) to improve the per- 
formance of the disparity estimator, (ii) to cope with 
multiple objects with the same disparity, and (iii) to 
implement the scheme in real-time. 
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