
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-15. 1994, Kawasaki 

REPRESENT AND ACQUIRE KNOWLEDGE FOR THE 
DEVELOPMENT OF AUTONOMOUS VISION SYSTEM * 

Xiaobu Yuan 

Dept. of Computer Science, Memorial University 
St. John's. Newfoundland. Canada A1C 5S7 

ABSTRACT 
T h e  visual perceptional ability of computer 

systems t o  understand the environment i s  
desirable in engineering design and m a n u -  
facturing where automat ion i s  anticipated. 
I n  order t o  empower a n  engineering sys- 
t e m  wi th  the heuristic capabilities, adequate 
knowledge representation techniques m u s t  be 
employed t o  resolve ambiguity in represen- 
ta t ion and uncertainty in decision making. 
Discussed in this paper is  how t o  represent 
environmental knowledge as object models so 
that they  can be utilized in spatial reasoning, 
and how t o  check knowledge completeness so 
that autonomous vision systems can be devel- 
oped wi th  self-regulated knowledge acquiring 
mechanism. 

1 INTRODUCTION 
Since the invention of the first computer, 

continuous effort has been devoted from both 
the academic and industrial communities to 
improve computer's capability. One of the 
long dreamed goalsis the ability of computer 
to understand the 3D environment by means 
of sensory devices[l], i.e, visual perception 
that simulates human vision[2]. When fur- 
nished with the capability, manufacturing 
and engineering systems could obtain the 
knowledge of the environment in which they 
are working, and further use the knowledge 
in decision-making activities, such as auto- 
mated machinery assembly and other factory 
automation applications. 

Besides the diligent work of obtaining 3D 
information from 2D images or directly from 
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sensory devices, an autonomous vision sys- 
tem demands for: (a )  powerful process- 
ing techniques to extract spatial features 
from images in practical environment[3]; 
(b) extensive graphics methods, including 
modeling methods to provide transforma- 
tion invariant representation and interfacing 
facilities[4]; (c)  efficient algorithms of object 
recognition that are free of mismatching and 
work well even in ambiguous situations[5]; 
and finally (d )  artificial intelligence to auto- 
matically acquire environmental knowledge 
and to use the knowledge in various spatial 
reasoning activities[6, 71. 

This paper discusses how to represent 3D 
objects as spatial domain knowledge, and 
how to automatically acquire the knowledge 
and further utilize it to make decisions. View 
sensitivity of spatial knowledge representa- 
tion (or better known in A1 as heuristic in- 
adequacy) is resolved by modeling objects 
with localized surface parameters. Auto- 
matic knowledge acquisition is then achieved 
by checking the mass vector chain of a model 
to determine if the knowledge is complete or 
alternatively to estimate the direction from 
which missing information can be obtained. 

2 MOTIVATION 
Knowledge representation is a descriptive 

notation that follows certain syntactic and 
semantic rules and describes those that an 
intelligent system needs to know. While 
the computational tractability requires the 
representation to incorporate and manipu- 
late efficiently within a computer system, the 
requirements of metaphysical and epistemic 
adequacy demand for ambiguity-free, clear, 



uniform, convenient, domain-relevant , and 
declarative representations[8]. 

In spatial domain, various methods have 
been used to represent solid objects[4]. One 
of the most attractive methods is the bound- 
ary representation of objects. In the method, 
spatial features are modeled by a function 
f (x, p)  = 0, where x E sR3 is a vector of coor- 
dinates, and p E 8" is a parameter vector[9]. 
When f (x, p )  = 0 is a family of surfaces, a 
surface in space is then a specific instance of 
f (x, p) = 0 whose parameters take a particu- 
lar value pi. Especially, if f (x, p )  = 0 stands 
for the family of all quadratic surfaces as in 
the application of surface approximation[lO], 
p is the vector, 

whose elements are the coefficients of the fol- 
lowing equation. 

An individual surface is therefore a vector pi 
with a particular value, e.g., the parameter 
vector for a planar circle 2' + y2 = 4 is pi = 
( 1 1 0 0 0 0 0 0 0 4 ) .  

As a result, the spatial domain knowledge 
is the description of 3D objects. It contains 
a group of symbolically represented object 
models. Suppose there are totally N objects 
in the space, and an object Oi has mi pieces 
of boundary surfaces Si(j), 0 5 i 5 N - 1, 
0 5 j 5 mi - 1. With each surface Si(j) 
described as a parameter vector, the knowl- 
edge of an object Oi is a model represented 
by a list of such variables. Spatial domain 
knowledge represented in such a method is 
metaphysically and epistemically adequate 
as well as computationally tractable when 
only static representation is concerned. 

Nevertheless, the representation is not 
heuristic adequate[ll] as it does not express 
the reasoning that goes through in solving a 
problem. It is because the parameter vec- 
tor of a spatial feature f (x, p) = 0 depends 
on the coordinate system under which co- 
ordinates are defined. When a transforma- 
tion with six-degree freedom takes place, a. 

in the application of manufacturing, the de- 
scription of boundary surfaces and objects 
changes correspondingly. Therefore, such 
models can not be used as system's knowl- 
edge of the environment since a same object 
may have different forms of representation, 
a fatal ambiguity of knowledge representa- 
tion which is regarded as view sensitivity 
in computer vision. For instance, the pa- 
rameter vector of the planar circle changes 
to another vector (0.89 0.25 -0.33 0.89 - 
0.33 0.13 0.0 0.0 0.0 4.0) if it is described 
under a new coordinate system after a rota- 
tion for 7r/6 around a vector (0.707 0.707 0) .  
Although many methods had been proposed 
to recover the original description, the pa- 
rameter vectors are still hardly usable as en- 
vironmental knowledge. 

In addition to the problem of using knowl- 
edge to understand the environment caused 
by view sensitive descriptions, the surface 
list of a model provides no information 
on knowledge completeness, i.e., if system's 
knowledge of an object is complete or how 
to make it complete so that environmental 
knowledge can be automatically acquired. It 
therefore becomes imperative to modify the 
representation of environmental knowledge. 

3 SPATIAL KNOWLEDGE 
View sensitivity is caused by the parameter 

vector pi that changes along with the coor- 
dinate system under which function f (x, p) 
is defined. As differential geometry has been 
successfully used in image segmentation be- 
cause view independent properties capture 
the spatial properties of surface shapes[lO] , 
when view insensitivity of object represen- 
tation is concerned, the coordinate systems 
chosen to define object surfaces should come 
from the surface characteristics that relate 
with surface shapes only. 

Surface centroid is the average of all sur- 
face points. It has been proven[l2] to be 
independent of descriptive coordinate sys- 
tems. In addition, according to differential 
geometry, there are also other transforma- 
tion invariant local spatial characteristics at 
the surface centroid, such as its maximum 
and minimum curvature, and its Euclidean 
distance to any point on the surface. When 



a coordinate system is set up locally on each 
surface so that its origin coincides with the 
centroid, t,he z axis points to the average nor- 
mal direction, the x axis to a direction deter- 
mined by a local surface characteristic, and 
the y axis makes the system a right hand 
Cartesian system with the other two axes, 
the local coordinate system on the surface 
is independent of viewing directions. Fur- 
thermore, when described in such a coordi- 
nate system, the representation of the sur- 
face inherits the view insensitivity. As for 
the topological relationship between bound- 
ary surfaces, it can be specified by a set of 
homogeneous transformation matrices that 
relate local coordinate systems to an object 
coordinate system[l3]. 

For a surface Si( j )  on object Oi(j), 0 < 
i < N -  1, 0 < j 5 m i -  1, let its local- 
ized surface description and transformation 

object closure and surface direction. While 
the knowledge of environmental objects are 
obtained by extracting surface parameters 
from sensory inputs, it becomes particularly 
useful for visual system to judge on existing 
knowledge so that consistent and complete 
object models can be accumulated from dif- 
ferent directions[l4, 151. 
4.1 Mass Vector Chain 

For a surface Sj(j), a mass vector Pn(sj(j)) 
is derivable from the pair ( sj(j), q(j)). It is 
the average surface normal n i ( j )  weighted 
by the projection area Ri(j) of sj(i) onto the 
x-y plane of its local coordinate system, i.e., 
Pn(si(j)) = n i ( j )  Rj(j) .  Since the sum of all 
the mass vectors for a closed object model is 
a zero vector[l6], if the mass vector sum of an 
object equals to a nonzero vector VgaP, there 
must be some surfaces still unprocessed and 
the total of their mass vectors is the negative 

matrix be si(j) and q ( j )  respectively. By of VgaP. Suppose the number for processed 
representing an environmental object Oi(j)  surface patches is m:, then, from equation 
with a model which is a list of (si(j), ri(j)) mi-1 
pairs, the environmental knowledge M is the n i )  + ( i  = 0 (4) 
collection of all the object models. j=o j=mi 

M = {Mi I Mi = ((ri(0),si(O)), a", 
it is easy to get the result. 

Since surfaces are given in local coordi- 
nate systems, the parameter vector for each 
boundary surface remains the same indepen- 
dently of descriptive coordinate systems. As 
the spatial structure of boundary surfaces is 
related by homogeneous transformation ma- 
trices that refer local systems to an object 
coordinate system, their relations are also 
transformation invariant. In such a way, en- 

mi-1 mi-1 

C Pn(si(j)) = - C Pn(si(j)) = -Vgap 
j=m; j=O 

( 5 )  
Being defined to the average normal vector 
n i ( j ) ,  each mass vector P,(si(j)) is actually 
the average visible direction of that surface. 
Therefore, Vgap provides an estimated direc- 
tion from which these unprocessed surfaces 
could be observed. 
4.2 T h e  Two-Sphere Method  

vironmental knowledge is changed to view 
insensitive lists, each of which stands for an 
object in the space, and whose elements are 
localized surface parameters composed of a . 

. .. 
local parameter vector and a homogeneous .a 

matrix. 

4 KNOWLEDGE 
COMPLETENESS (a) Convex Surfaces (b) Concave Surfaces 

View insensitivity is an obvious advantage Figure 1: View Estimation 
of using localized surface parameters in vi- 
sual perception. More important is that the This observation can be used in automatic 
representation embodies the knowledge of knowledge acquisition. Consider the two 



spheres in Fig. 1 as two Gaussian spheres, 
one for objects with convex surfaces and the 
other with concave surfaces. As a convex 
object has a unique Gaussian image[l7], a 
Gaussian sphere covering the object stands 
for its boundary condition. It is obviously 
that, if the total mass vector of obtained sur- 
faces is v(Fig. l (a)) ,  the average visible di- 
rection for the unprocessed big arc from b to 
a is in the opposite direction of v .  Even if 
more surface patches are processed after sev- 
eral views, the negative of the updated total 
mass vector, which is v' in the figure, still 
points to the visible direction of unprocessed 
portion. 

For concave surfaces, a similar Gaussian 
sphere can also be used to examine the 
1)oundary condition for the concave part 
where only concave surfaces are concerned. 
Concave surfaces usually do not form a 
closed mass vector chain by themselves. 
When a virtual surface is introduced to rep- 
resent the cutting surface, however, the total 
mass vector for the concave surfaces plus the 
virtual surface must be zero since they form 
a close surface. Suppose there are m h  con- 
cave patches in a hole, the following relation 
exits 

where Vi(hole) is the mass vector for the vir- 
tual surface patch. As a result, an equation 
similar to Eq. 5 is obtained to estimate the 
visible direction for unprocessed concave sur- 
faces. 

This eq~lation also applies to objects with 
more than one open hole where more virtual 
mass vectors, instead of one, are added to 
the equation to count in all cutting surfaces. 

When an object has both convex and con- 
cave surfaces, however, the two spheres have 
to be combined together to investigate the 

knowledge completeness of boundary sur- 
faces. Since the two types of surfaces form a 
boundary together, the virtual surface rep- 
resented by Vi(hole) in Eq. 7 can be dealt 
as a virtual surface that makes the object 
boundary close without the concave surfaces. 
Therefore, after taking off the virtual sur- 
face from Eq. 5, and taking off Vi(hole) from 
Eq. 7, the sum of mass vectors for the object 
forms a relation that view estimation can be 
made for objects with both convex and con- 
cave surfaces in a way similar to simple oh- 
jects. 

In the equation, all local surfaces si( j)  be- 
long to a list ((.ri(O), si(0)), . . . ,  mi - 
I) ,  si(mi - 1))) in Eq. 3. 

It can be concluded from thc above discus- 
sion that the knowledge of an environmental 
object is complete only if the mass vector 
chain of its model list is closed; otherwise, 
the vector that connects the head to the tail 
of the chain estimates the visible direction 
of the missing surfaces. Therefore, the chain 
of mass vectors of all the obtained boundary 
surfaces of an object can be used to check the 
spatial closure of the object and to predict 
the directions of unprocessed surfaces. 

5 THE USE A N D  ACQUISI- 
TION OF KNOWLEDGE 

Since no view sensitivity is involved, object 
recognition based on knowledge represcnta- 
tion in Eq. 3 is direct. It is carried out in 
three steps. Firstly, localized parameter vec- 
tors of the examined object are compared 
directly with those of acquired models. A 
model is considered as a candidate for the 
object only if it has surfaces matching with 
any of the object surfaces. Secondly, those 
matched model surfaces must have the same 
topological relations as their object surfaces. 
Finally, unmatched model surfaces should 
not be visible if the model is rotated to the 
orientation of the object[l8]. 

As for the mechanism of automatic knowl- 
edge acquisition, its usage in engineering de- 
sign and manufacturing systems is obvious 



(a) Sample Object (c) 2nd View (e) 3rd View (g) 4th View 

(b) 1 st View (d) Model (1 &2) (f) Model (3&4) (h) Final View 

Figure 2: Automatic Knowledge Acquisition 

because it enables the systems to learn their 
working environment by themselves. Its op- 
eration can be explained[l9] with a sample 
object(Fig. 2(a)), which could be a machin- 
ery part in automatic assembly. 

First of all, spatial features are extracted 
from sensory inputs (e.g., a range image) 
taken at  a random viewing direction. Af- 
ter defining local coordinate systems for all 
the extracted surfaces, a partial model of the 
object is then established as a list of local- 
ized surface parameters(Fig. 2(b)). Since all 
surfaces of a convex object should be visible 
from two opposite directions, the next view- 
ing direction is the direction opposite to the 
first random direction(Fig .2(c)), instead of a 
direction determined by mass vector chains. 
At this time, the partial model of the object 
is updated with new information(Fig. 2(d)), 
during which identical surface descriptions 
play an important role in finding a surface 
should or should not be merged with other 
surfaces. 

Following it, the mass vectors of all the 
surfaces in the partial model are chained to- 
gether. If the mass vector chain is closed, 
i.e., the object is closed in space, transfor- 
mation matrices are finalized with an object 
coordinate system,, and the model is saved 
as system's knowledge of the environment. 
Otherwise, the system repositions the sen- 
sory device to a direction determined by the 
mass vector chain, and repeats the previous 
process to update the object model(Fig. 2(e) 

and (f) ) .  Again, surface merging is necessary 
as different parts of same surfaces may be ex- 
tracted repeatedly during model updating. 

View adjustment is necessary when the es- 
timated direction of unprocessed surfaces is 
blocked by other surfaces. If an updated par- 
tial model has little or no difference with 
the old one(Fig. 2(g)), the next view is 
determined[l3] by the group of blocked sur- 
faces(Fig. 2(h)), rather than the mass vector 
chain. After the acquisition, the model of 
the object is the knowledge of the environ- 
ment. It can then be used to identify objects 
even in ambiguous situations[l8]. In such a 
way, an engineering system is able to learn 
its environment and uses what it has learned 
to perform activities that require visual per- 
ceptual capabilities. 

6 CONCLUSION 
Discussed in the paper is a representation 

method of spatial domain knowledge, which 
uses localized surface parameters to describe 
environmental objects. Because of its view 
insensitivity, descriptions of objects can be 
used as environmental knowledge in object 
recognition and other visual perceptual ac- 
tivities. In addition, the ability of automatic 
knowledge acquisition based on mass vector 
chains enables a computer system to learn 
its environment. The presented technique is 
useful in autonomous robot for an unknown 
environment as well as factory automation. 
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