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ABSTRACT

Tripod operators (TO's) are a versatile class of feature extric-
tion operators for surfaces. They are useful for recognition
and localization based on range or tactile data. They extract
a few sparse point samples in a regimented way, so that N
sampled surface points yicld only N-3 independent scalar
features containing all the pose-invariant surface shape infor-
mation in these points and no other information. They pro-
vide a powerful index into scts of prestored surface represen-
tations. A TO consists of three points in 3-space fixed at the
vertices of an equilateral triangle and a procedure for making
several "depth” measurements in the coordinate frame of the
triangle, which is placed on the surface like a surveyor's tri-
pod. They have complete six DOF isomeltry invariance and
can be imbedded in a vision system in many ways and
applied to almost any surface shape. Here the focus is an
experimental study in which TO's are used to search a clut-
tered range image for one of 25 known shapes, typically in
milliseconds, with very few false positive detections.

L INTRODUCTION

This work is motivated by the long-standing observation that
a small set (e.g., six lo twelve) of point samples of the surlace
of an object is highly informative, and that it ought to be pos-
sible to construct a procedure for mapping such data into the
identity and/or posc of an object in essentially constant time,
for a significant range ol cases. We have largely succeeded
in doing this, using a geometric procedure called the tripod
operator (TO). A typical TO is applied to a range image in
approximately 2 milliseconds, as currently implemented on a
Sun SPARCstation 10, resulting in a hypothesis about the
surface under the operator. A range image can be searched
for a shape by repeatedly applying TO’s at random places on
the image. Potential applications include industrial parts
recognition, target recognition, mobile robot vision, and face
recognition,

In order to rapidly recognize objects based on surface shape,
especially if the library of known objects is large and/or the
average complexity of each object’s surface shape is large,
one needs to make feature measurements which are
sufficiently informative, despite noise, that the reduction in
the candidate set per unit computation time is acceptable.
For example, one might reasonably measure this by the
reduction in the Shannon Entropy of the sct of identities
and/for poses. By such a measure, stcady progress has been
made in previous work. Grimson [4,5] and others [6,7,8.9]
extensively developed the idea of scarching for associations
between image features and model clements consistent with
geometric constraints among the model elements, using
interpretation trees 10 represent the consistent hypothesised
associations (interpretations). However, interpretation trees
require quadratic time processing per model. This is miti-
gated by using particularly informative features. We have
argued that TO's can be used efficiently as such features
[1,2]. A second conncction is that a TO can be regarded as
precompiled prepruned interpretation trees having sparse
range pixels as the image features. This is their original
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inspiration. Lamdan and Wolfson [10] contribute 1o efficiency
in model-based vision by providing precompiled geometric
pointers among local feawures. This requires the ability to
detect a reasonably small number of reasonably stable
interest points and 10 define informative features there,
whereas TO's are to be used anywhere on a surface and their
informativeness can be looked up. Stein and Medioni [11]
describe local operators called “splashes” with attractive
invariance propertics, but they have high computational cost
and depend on unoccluded and valid range pixels on certain
geodesic lines. The RANSAC method [12] uses sparse sam-
ples economically to test a fit to a specilic class of unctions,
but indexing is not provided; one must sequentially try func-
tion classes. Many kinds of local feature detectors or match-
ers have been explored for range images, For example, [13]
concentrates on dihedral edges and [14] on the two principle
curvatures of smooth surfaces. The principle limitation of
most of them appears (o be their discriminating power per
unit computation. For example, estimators of the two princi-
ple curvatures cither provide us with two real numbers worth
of indexing information (and dircction information), or the
decision that the surlace is not a good lit to a quadric in the
current neighborhood. The former case allows discrimination
of roughly g2 local surface shapes if we can resolve q curva-
ture values in noise. The latter case requires us 1o continue
looking for local feature information (perhaps a dihedral will
fit here or a quadric pawch clsewhere). TO's provide one
operation at a place on a surface, yielding a feature vector ol
any dimensionality d, applicable 10 nearly any surface, and
potentially discriminating as many as roughly ¢ hypotheses
about the object (and/or its pose) on which the TO lies.

Tripod Operators are "somewhat global” and can sometimes
straddle many surface undulations with its point samples, and
span a large proportion of an object. They can operale on
sparse regions of a dense range map, sparse data acquired
actively from a sequential random access range scanner (such
as in [15]), or via a tactile version of a TO. In earlier publi-
cations, we argue that the TO should allow very fast recogni-
tion [1] and present supporting experimental evidence by
discriminating 1 object [rom a library ol 10 using in some
cases only one TO placement, using synthetic range data [2].
In [3] we extend this 10 the case of noisy LIDAR range
images of isolated real objects, using a Bayesian approach to
obtain reliable recognition using a small number (5 to 10) of
low order (order 4) and high noise (1/10 the TO's edgelength)
TO placements.

We have been studying TO's using a soltware system called
TRIPOD, which allows various experiments to be performed
involving the application of various kinds of TO’s to real or
synthetic range images, and the use of various representation
and matching methods on the resulting feature space point
sets. Our overall research goal is o determine the limits of
performance of a vision system based on TO's, and 10 realize
that performance in prototype vision systems. Performance
measures of interest Lo us include speed, classilication error,



tolerance of noise and occlusion, library size, storage require-
ments, and ease of representing new shapes. Variables in
such a vision system that effect performance include

1. Edge length of operator

2. Order of operator

3. Efficiency of the algorithm that computes the operator

4. What hypothesis verifier is used, if any

5. Representation of the TO invariant signatures

6. Indexing method used to assess proximity Lo signature

7. Method for relating multiple TO's on the same object

8. Method for representing pose constraints

9. Use of probabilistic reasoning
The focus of this paper is the use of isolated TO placements
to rapidly recognize instances of a set of 25 typical manufac-
tured surface shapes in range images containing a variety of
known and unknown shapes. Items 4,7,8 and 9 above are
outside the scope of this paper. Our two-part research stra-
tegy is to first learn how 1o obtain the greatest possible
discrimination in the shortest time using individual TO place-
ments, and in other work to exploit the relative pose of multi-
ple placements to further increase performance.

2. REVIEW OF TRIPOD OPERATORS

2.1 DEFINITION AND PROPERTIES

A tripod operator consists of three points in 3-space fixed at
the vertices of an equilateral triangle of fixed edgelength e,
and a procedure for making several "depth" measurements in
the coordinate frame of the triangle, which is placed on the
surface like a surveyor's tripod. These measurements take
the form of arc-lengths along "probe curves" at which the sur-
face is intersected. Figure 1 shows three examples of TO's.
Figure 1a shows a very simple TO with one line probe fixed
symmetrically with respect to the rigid triangle ABC. The
single scalar feature is the distance from the plane of ABC at
which the probe intersects the surface. This resembles a
mechanical optician's tool called a spherometer. We call the
number d of scalar features the order of the operator. Figures
1b and 1c show TO's that can be viewed as a set of equila-
teral triangles hinged together so that all all d+3 points can
be made to contact a surface. The angles of the d hinges arc
the features. We prefer this type (called linkable TO's)
because of their symmetry and uniform sensitivity 10 noise.
A planar surface yields 8=180° for all d feawre components.
We will sometimes use ¢ =0 — 180 instead of 8 for conveni-
ence. Many variations of these TO's could obviously be con-
structed. Feature noise is related to range noise n by the
approximate expression ng = 51xn/e, where ng is the feature
error in degrees, and n is expressed in the same distance units

as the edgelength e.

Figure 1. Examples of Tripod Operators: (a) Simple lincar
probe TO (b) Order 3 linkable TO (¢) Order 9 linkable TO

D.E,F SWEEP
CIRCULAR ARCS

For an N-point TO, the N sampled surface points yield only
N — 3 independent scalar features (the order d is N — 3).
These features contain all the surface shape information in
the 3N components of the points, since they suffice to recon-
struct the relative positions of the N points. They contain no
other information; For example, they have complele six DOF
invariance under rigid motions (the group R*xS0(3)). Thus,
they depend on where the tripod lies on the surface, but on
nothing else. A key property is that only a 3-dimensional (at
most) manifold of feature space points can be generated from
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a given surface, for any dimensionality d of feature vector,
since the tripod can be moved only in 3 DOF on a surface.
This allows objects to be densely sampled with TO's at
preprocessing time with a manageable number of operator
applications (typically, a few thousand) to obtain almost all
the feature vector values obtainable from any range image of
the object. This set is a kind of invariant signature. For
brevity, we will call it the signature of the object or surface
(with respect to a particular type of TO). It can be stored in
bins (e.g., of dimension 3 or 4) for later efficient access of
near neighbors to TO features measured al recognition time.
These bins can optionally contain precomputed probability
densities, analytic expressions for distances to nearby signa-
ture manifolds, and partial or complete descriptions of the
relative poses of tripods and models, all to serve various pur-
poses in a recognition system.

2.2 PLACING A TRIPOD OPERATOR

Since in some applications of the tripod operator, the compu-
tation consists only of placement and a litle indexing, the
cost of placing the operator should be kept small. This can
be done by efficiently implementing a procedure similar to
the following. Consider placing the TO's of Figs. 1bor Ic on
a dense range map. Point A can be chosen as any point on
the image surface. Interpolation is to be done locally as
needed (e.g., using piccewise triangular facets). Point B can
be found by moving along a line at orientation & in image
coordinates (pixel indices) until the 3D distance IABI =e.
This can be done in logarithmic time (essentially constant
here) usi\r{m binary search. Then we search the circle of
radius .5V3 ¢ oriented coaxially around the center of the seg-
ment AB, using binary search, to find a point C close 1o the
surface. A similar circular search yiclds each remaining
point. A key step in the circular search is the mapping
(specific 1o a range scanner's geometry) from a point (x,y.z)
to the indices of the range pixel whose ray (x,y.z) lies on.
This allows the front/behind decision required by the binary
search. In the case of a sequential random access range
scanner, it may be elficient to monotonically search elliptical
paths in image coordinates until the two distances being
enforced (e.g., IACl=e¢ and IBCl=¢) are both correct. The
ellipses here are the projections of the previously described
circles onto image coordinates. Finally, in the case of a tac-
tile TO, the computation is mechanical; the feature values are
10 be read from position transducers (e.g. from linear poten-
tiometers by an A/D converter).

2.3 SYMMETRIES OF SURFACES AND OF TRIPOD
OPERATORS

Surfaces with one symmetry, such as extrusions, surfaces of
revolution, and helical projections produce only a 2-
dimensional manifold in feature space. Cylinders, having
two symmetries, produce only a nearly circular I-
dimensional curve, and spheres a single point. Scaling a TO
by changing its edgelength does not effect the signature of
surfaces swept by a line with one point fixed (e.g., cones,
planar n-hedral vertices, and planar dihedral edges). Regard-
less of the surface, an operator with a 3-fold symmeltry (e.g.,
those in Fig. 1), produces signatures unchanged by cyclicly
permuting each triple of corresponding features. In Fig. lc,
the three 3-cycles (1,2,3), (4,5,6), and (7,8,9) show this pro-
perty, for features ¢, through ¢g, respectively. This allows a
3-fold storage reduction, e.g., by permuling the features so
that ¢, is the largest. If the TO, in addition, has handedness
symmetry (as our examples do), the signature can be
modified by a procedure that allows recognition of the "other
side" of any surface already recognizable. We call this inver-
sion of a signature. It is done by by transposing certain pairs
of corresponding features (e.g., (7,5). (1.2), (4,8), and (6,9) in
Fig. 1¢) and replacing cach feature value ¢ with—¢. Also, the
signature of the opposite-handed (reflected) version of a sur-
face can be found by performing those transpositions without
negating the features.



2.4 THE STRUCTURE OF THE TO SIGNATURES OF
SOME SIMPLE SHAPES

We have been studying the shapes ol TO signatures [16] in
order to understand how they can overlap and to lind ways to
approximate them with algebraic and semi-algebraic expres-
sions. Such approximations are expected to greatly reduce
storage requirements for large libraries. The signatures of
order 3 operators (Fig. 1b) were rendered as a rotating cloud
of points on a computer; sclected 2D snapshots are shown in
Fig.2. In the special case of "smooth” surface regions, the
signature is nearly a circular ring coaxial with the diagonal
axis. The offset and radius of the ring can be readily used 1o
compute estimates of the principle curvatures and other
differential geometric parameters [16]. Surfaces with Cy or
C, discontinuities tend to produce signatures with similar
numbers and kinds of discontinuitics (e.g., Fig. 2¢,d), and
have roughly commensurate complexities of description.
Thus, this umbrella-shaped 2-manifold can be well approxi-
mated with a few polynomials, whereas the discrete signature
might need 20,000 points (sce Fig, 4) for thorough saturation.

(b)

Figure 2. 2D projections of TO signatures taken with the TO
of Fig. 1b. (a) Superimposed signatures of six hyperbolic
paraboloid patches (large rings), four elliptic patches (rings
lying on a cone), and 10 spheres (the points). (b) A torus; the
signature is a piece of cone in §;0205 space. (c,d) A 90°
planar dihedral, viewed diagonally and along ¢y, respec-
tively. All signatures of this TO have ar least a 3-lold rota-
tional symmetry about the diagonal §)=¢2=¢4, all signatures
in (a) and (b) are surfaces or curves of revolution.

3. CONDITIONS FOR RELIABLE RECOGNITION
USING A SINGLE TO PLACEMENT

The low dimensionality of TO signatures (three, at most) Lyp-
ically allows the computation and storage of signatures con-
taining (1o a reasonable resolution) all feature vectors obtain-
able from a given surface shape, regardless of viewpoint.
Moreover, since the feature space can have high dimen-
sionality (d=9 in these experiments) the signatures of
different objects’ surfaces [requently have little or no inter-
section, allowing recognition of some objects with only one
placement of a TO on the image of the object. Our experi-
ments show that this circumstance occurs frequently with
common shapes, and also that signature overlap can usually
be dealt with. A deterministic viewpoint is taken here (When
range error is a large fraction of TO edgelength, a probabilis-
tic approach is essential).

3.1 FALSE POSITIVES

We will now derive sufficient conditions for precluding any
false positive detections. Let us denote by A the set of all
feature-space points obtainable by applying a certain TO 1o
surface shape A. We call this the exact signature of shape A.
Let A% denote some signature of shape A such that the
greatest L distance from any point in A to the nearest point
in A% is 5. We call this a signature of A saturated to 8. This
kind of signature can be obtained in practice by applying a
TO a finite number of times 1o a surface. We similarly define
B and B? for shape B. Now let A~ denote the st obtained
by deleting from A® all points within an L, distance € of any
point in B®. We call this procedure overlap removal and
speak of subtracting one signature from another. Now let v
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be the maximum L, distance that sensor (and other) error can
introduce, and B* the set of points within v of B. Then B*
includes all points actually obtainable by placing a TO on
shape B. Summarizing key statements from above,

1. If(b* € B*),I(be B)st. [ Ib*=bl | <v.

2. If(be B),3(b% e BY) st 11b-b%11 <.

3. If(a e A and (0% € B®), 11a —b%11 > &
Now consider a placement of a TO on shape B, producing the
noise-corrupted feature point b* € B' insicad of the
corresponding exact point b € B. Suppose a” is the nearcst
point in A to b*. Then from 1, 2. and 3. above,
I1b*—=a” || 2e-8-v. This means that we can never mistake
a TO measurement taken from shape B for one taken from
shape A using a threshold t© if €2 8+v+t. That is, if we
index into the stored signature A~ using a measured feature
value f, and find that a~ € A~ is within T of f, then if
€2 8+v+T, we are sure that fis not in the set B, and thus
was not obtained from shape B, Figure 3 makes the inequal-
ity relation clear geometrically.

Boundary of exact signature B

Boundary between A~ and removed part of Al
Figure 3. Schematic illustration ol overlap removal for TO
feature space signatures

3.2 FALSE NEGATIVES If t<8+v, note that a TO place-
ment can fail 10 detect a shape duc to insuflicient saturation.
This is generally of less importance than false positives,
because negative classifications are simply the deferring of a
decision, resulting in extra expended time to find an instance
of the shape. If we want to be sure that every TO measure-
ment from shape A will lead (o detection (allowing false
positives from other shapes), we could test for neamness of the
measured point to the signature A* using a threshold
1> &+v. Inscction 4 we will sce that the results of section 3
are overly stringent [rom & statistical point of view, e.g., we
can violate € 2 §+v+1 by a signilicant margin and still have
very few false positives.
4. EXPERIMENTS

The purpose of these experiments is o study the discriminat-
ing power of an individual TO placement. Therefore, we use
no preprocessing (except range rectification) and no
hypothesis verification here. Nevertheless, this “purc”
approach is quite powerlul in many circumstances. In the
experiments TO signatures were generated for 25 surface
shapes. Nexi, overlap removal and analysis was done, fol-
lowed by recognition experiments in which a specilied shape
is searched for until found.

4.1 OBTAINING THE SIGNATURES

TO signatures were generated for 25 surface shapes by ran-
domly placing an order 9 TO (Fig. 1c) on synthetic range
images of each shape 50,000 times. The resulting signatures
were stored as discrete feature-space points, with a numerical
precision of 1°. Duplicate feature vectors were removed,
reducing the 50,000 points to as few as 61 points for the large
cylinder and as many as 36,000 for the outside trihedrul
comer. Then the 3-fold symmetry of this TO (sec section
2.3) was used Lo slightly increase the density ol the signa-
tures. These signatures correspond o A% of section 3,
although & was not directly controlled. The 25 shapes were
chosen to include various discrimination challenges, e.g.,
cylinder vs torus with the same minor radius, and the
hemisphere/cylinder (with Cy discontinuity) dihedral region
vs the cylinder or sphere. The following are the names and



descriptions of the shapes:
(NOTE: e = TO edgelength, r= radius)

0 plane plane

1 cyl2e cylinder; r=2e

2 cyl2pSe cylinder; r=2.5¢

3 sph2e sphere; r=2e

4 sph2pSe sphere; radius = 2.5¢

5 outcomer  outside 907 trihedral corner

6 ballcyl2e hemisphere-capped cylinder; r=2¢
7 ballcyl2pSe  hemisphere-capped cylinder; r=2.5¢
8 incomer inside 90° trihedral corner

9 peyl2e plane-capped cylinder; r=2¢

10 peyl2pSe  plane-capped cylinder; r=2.5¢

11 dh270 270° planar dihedral (convex)

12 dh90 90° planar dihedral (concave)

13 tor2ede torus; r=2¢, R=4¢

14 tor2pSede  torus; r=2.5¢, R=4¢

15 phole2e plane-bottomed hole; r=2¢

16 phole2pSe  plane-bottomed hole; r=2.5¢

17 dh225 225 planar dihedral (ramp down)
18 dh135 1359 planar dihedral (ramp up)

19 peg2e cylinder perpendicular to plane; r=2¢
20 edgehole2e  cylindrical hole in planc; r=2¢

21 peg2p5e cylinder perpendicular to plane; r=2.5¢

22 edgehole2pSecylindrical hole in plane; r=2.5¢

23 thshelf planar trihedral; 90°, 90°, 270°

24 thnotch planar trihedral; 90°, 270°, 270°

Some are inversions of cach other, (5.8), (23,24), (9,15),
(10,16), (11,12), and (17,18). In these cases we gencrated the
latter by inventing the data from the former (sec section 2.3).
We see in Table 1 that most pairs of the 25 shapes’ initial sig-
natures were already entircly disjoint (separation > 5°)
including a cylinder (2) and the torus (14) with the same
minor radius. Most ambiguous points were from shared
parts; an inside trihedral comer (8) contains an inside
dihedral edge (12). Later, we will use overlap removal 1o
make the final signatures (nearly) disjoint by design.
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Figure 4. Saturation graphs for representative shapes.
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The results of section 3 show the importance of highly
saturated signatures (small 8). Therefore we have studied
the dependence of the degree of saturation on the number n
of randomly placed order 9 TO placements, for various
shapes. Figure 4 shows log/log plot of the average L, dis-
tance o (in degrees) of a feature space point to its nearest
neighbor versus n. We found that the dependence is approxi-
mately 6 = c/n""*, where k is approximately the dimension of
the signature manifold. k = .952 for the cylinder, whose man-
ifold has dimension 1. k = 1.89 and 1.92 for the 225° and
270° dihedrals, respectively, whose manifolds have dimen-
sion 2, and k = 2.94 for the fully three dimensional outside
comer. The k values are slightly lower than the correspond-
ing dimensionality primarily because of low-dimensional
subshapes (e.g., the plane (k=0) is in the n-hedral shapes),
These empirical results are consistent with the observation
that the density of n random points on a k-manifold is
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approximalely proportional to n*. Note that ¢ is not the sume
as & e.g., for peyl2pSe, =34, while about .1% of new
points from this shape were farther than 10° from their
nearest neighbor in our signature. Thus 8 > 10°,

4.2 SIGNATURE OYERLAP

Next, pairs of signatures were processed to remove overlap
(& = 5°) with other shapes’ signatures. Cenain of these "sct
subtractions" were forbidden; e.g., we did not allow shapes
that are parts of other shapes 1o be deleted. For example we
did not "subtract” dh90 from plane. The full set of forbidden
pairs is (5,8,9,10,11,12,15,16,17,18,19,20,21,22,23,24) from
0, (6,9,19) from 1, (7,9,10,21) from 2, 6 from 3, 7 from 4,
(5,23,24) from 11, and (8,23,24) from 12, referring to the list
above. Table 1 was computed before overlap removal, show-
ing the percentage of shape A left after subtracting shape B,
for all 25% pairs. Note that most of the signature pairs have
little or no overlap, allowing casy discrimination.
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Table 1 Overlap percentages (-- denotes 100%); shape
indexed at left subracted from shape indexed at top (€=5°).

4.3 RECOGNITION

Each signature was stored in bins in a three-dimensional
array (using the first 3 feature components) to facilitate near-
neighbor lookup. Al recognition time our system randomly
placed TO's on the synthelic range image of Fig. 5a, which
contains instances of all 25 shapes, and labeled the locations
of the TO’s as ambiguous or unknown (white) or as the shape
currently being sought (black). The decision rule was to note
whether the distance from the TO feature vector to the
nearest point in the signature at hand was less than T, which
was set 10 5°. For cach of the 25 shapes, with range noise ini-
tially zero to help isolate error sources, we applied the TO
enough times to obtain 50 correct detections of the shape,
and recorded various results such as the mean time (in TO
operations) between detections (MTBD) and data on any
false positive detections. The MTBD can be regarded as the
ratio of the image arca to the "cflective area” of the shape
sought, for a particular TO size e.

Figure 5. Noisy range images showing reliable detection of
shapes by TO's; (a) tor2p5c4e is detected in 8 placements in
a synthetic image. (b) dh270 is detected in 8 placements on a
LIDAR image with TO edgelength = 7 cm. Both took
approximately 50 milliseconds.



About 63% of the TO placements on the image of Fig. 5a
aborted due to contact of a probe point with a jump boun-
dary, which is locally detected by pixel disparity. This is typ-
ical for cluttered scenes and is a highly efficient substitute for
image segmentation. The following results are described for
non-aborted placements. The smallest MTBD values were
for plane (2.74) and the tori (both about 5). The largest was
for phole2e (483), the small planc/cylinder dihedral at the
bottom of the small hole.

The estimated mean time between false positive detections
(MTBF) was = (none observed in several thousand place-
ments) for 12 shapes and varied from 17,088 placements for
incomer to 127 for peyl2e (peyl2pSe was falsely detected).
Overall, the results showed very few false positives, which
were primarily due to the lack of sufficiently exhaustive sig-
natures, leading 1o failure to delete some point common to
two shapes. False positives due 1o unknown objects dre more
difficult to prevent, but are fairly rare. The false positives are
all due to violation of € 2 d+v+1. If § were 0 (exact signa-
ture), 5° 2040+5° would hold, precluding false positives.
However, & exceeds 10 in some of the signatures used, due
to small portions of the exact signature B being farther than
10° from the stored signature. This causes no trouble for
most pairs, because they arc already separated by much more
than the imposed € before overlap removal. However, our
peyl2pSe signature has both high & and high overlap with
peyl2e, causing the above problem. We found that we could
drive sharply down the [alse positive incidence by either
increasing €, which had the side effect of increasing the
MTBD by introducing false ncgatives, or by sampling more
to decrease 8, particularly at the low density places in the sig-
nature. The latter is more auractive, because it does not
compromise the MTBD rales significantly. We plan to pur-
sue the construction of unilorm density signatures with
tightly controlled & 1o address this issue.

Having discussed how 1o avoid shape confusions in the
absence of noisc, we ran some recognition examples with
added range noisc of peak value ¢/40 (edgelength e=.2, noise
= .005). This yiclded a peuk displacement v=6.5 in feature
space. For example, for the two lori, with T = 5, we found
that at this noise level, well within the capabilities of various
existing range scensors, there were no false positives in
thousands of trials, and only 10% of the TO's lalling on the
tori failed to detect them. Their signatures are only 7° apan
at their nearpoints. This violates €2 8+v+1 (e=7, 8=1,
v=6.5, t=5), but the probability ol the vectors in Fig. 3 align-
ing just right to cause a lalse positive appears small, both
considering the geometry of Fig. 3 and the experiments.
Repeating this with range noise ¢/20, we found that the large
torus was mistaken for the large cylinder 10% of the time (all
of cyl2pSe lies within 6.87 of tor2pSede), but all tor2ede
detections were correct, In ligure 5b, we search a LIDAR
image for the dihedral dh270 with range noise = ¢/23 (73mm).
The MTBD is about 15 plicements, and we saw no false
positives. Our next step will be to seek a sysiematic way o
set €, T and &, given the average noise, for optimal perfor-
mance.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have studied the ability of individual order 9 TQ's 10
discriminate 25 surface shapes in a clultered range image and
concluded they can in many circumstances do so rapidly and
with very few false positive detections. Conditions for
guaranteeing this were derived. A TO can be applied and
interpreted in less than 2 milliseconds on a Sparc Worksta-
tion. We plan to reduce this time by software oplimization,
and to study analytic approximations of TO signatures, com-
bining pose constraints using multiple TO placements, proba-
bilistic approaches, and other topics aimed at finding the

25

limits of their performance. We are considering applications
including LADAR-based target recognition, industrial parts
recognition, and landmark recognition for mobile robots.
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