
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994, Kawasaki

Real-time Geometric Distortion Correction and
Image Processing on the 1D SIMD architecture M P

Anders &troml, Folke 1saksson2
'Image Processing Laboratory, Dept of Electrical Engineering

Linkoping University, S-58183 LINKOPING, Sweden
2 ~ a a b Missiles AB, S-58188 LTNKOPING, Sweden

email: andersa@isy.liu.se

Abstract

This paper describes how geometric distortion correction
and image processing operation can be performed in real-
time on an IVIP system. The IVIP is a modified version of
RVIP RVIP is currently being manufactured and it is going
to be used for radar signal processing. The IVP is targeted
to perform the time consuming first stages of image pro-
cessing. This includes geometric distortion correction and
low level image processing. The material shown in this
paper shows that very little time is spent by IVIP on image
correction and linear interpolation (6 mslframe in the pro-
jection case). Given a frame-rate of 25 framesls, less than
15% of the available processing time is spent on correction
and interpolation.

Introduction

Many image processing applications require geometric
corrections on the acquired image before the actual image
processing can take place. This is the case when we want to
have a constant view of the scene and the camera is
mounted on, for example, a robot arm, a car, or a plane.
Figure 1 shows a schematic operation flow for this type of
processing.

Figure 1

A very typical geometric distortion is shown in Figure 2.
The image that we get from the input is the one to the left,
i.e. the (x,y) image. The image that we want to perform our
image processing operation on is to the right, i.e. the (u,v)
image. In thiscase we have both a rotation and a projection
of the (u,v) image in the (x,y) image.

w eve1 - - Image
input

Figure 2

This means that each pixel in the (u,v) image has to com-
pute its coordinate in the (x,y) image and obtain the pixel
value at that position. In the projection and rotation case
the mapping function can be described as

-

where ai, bi, ci, and di are constant over the whole array.

Geometric
correction

It is also possible to think of an applicationwhere we have a
number of small parts in the (x,y) image which we want to
assemble to a single image as in Figure 3. This is the case if
we want to perform the same image processing operation
on a number of sub images. However, we must be aware of
the edge problem.

Figure 3

This type of mapping procedure is normally considered to
be unsuitable for an SIMD array. The reason is that two
neighboring pixels in the (u,v) image are not necessary

neighbors in the (qy) image. This is especial true if we have
generalized functions which can be expressed as 4 * 32-bit 110-register

16-bit bi-directional
shift register

In this paper we describe an SIMD system which both com-
pute the (x,y)-addresses for each (u,v) and perform the low
level image processing. The SIMD processor used in this
application, called IVIP (Infra-red Video Image Proces-
sor), is a modified version of the 1-D SIMD array proces-
sor RVIP [I]. RVIP, Radar Video Image Processing, has
been designed at Linkoping University and it is currently
being manufactured at Ericsson Radar Electronics in
Molndal, Sweden, and it istargeted for radar signal proces-
sing.

MP, Architecture
The intention is to build the IVIP, Infra-red VIP, as an
MCM. The size of each module would be 2"*2", and it will
contain 512 processor elements as shown in Figure 4. This
is the same strategy as RVIP which is already being built.
Several IVIP chip can easily be joined together to form a
larger array.

One PE

110-registers
Shift-register

Memory
Multiplier and divider

ALU
Accumulator

Figure 4, A 512-IVIP chip

Each PE is bit-serial with a common 1-bit bus to which all
the units are hooked on as shown in Figure 5.
At the top of the bus we have four VO banksof 32 bits each.
Each register is dual-ported which means that, at the same
time as the input data is written into the register the pre-
vious content is sent to the output.
The bi-directional shift register is used for internal com-
munication between PEs in the array.
There are 2048 bits of static memory.
The ALU is a 1-bit logic unit with three input registers. The
ALU performs the logical operations and the addition and
subtraction.
The serial parallel multiplier and divider is added to each
PE to speed up the multiply-and-accumulate (MAC) and
the division operations.
The accumulator is used to speed up the arithmetic opera-
tions as well as to store temporary data.

12-bit serial parallel
multiplier and divider

LDJ 32-bit accumulator

Figure 5, One PE

At this stage the IVIP is clocked with 50 MHz. A MAC
operation takes 2b cycles to complete. For 12-bit input
data that is 24 cycles or 0.5 ps. However, in this time this
operation has been perform by 512 PEs which means that a
MAC operation is performed every 0.05 cycle, or 1 ns. The
division takes 6b cycles due to the carry propagation.

Address computation
To perform a geometric distortion correction the IVIP
works in a two-stage pipe-lined fashion. First, the (qy)
coordinate for each PE are computed within the array, i.e.
all (u,v) for a given row v. The computed (qy) coordinates
are placed in the 110-register. Then, the image processing
operations are performed on the image data from the pre-
vious line at the same time as the (x,y)-addresses are read
out from the processing array and the image data are read
in. This is shown in Figure 6.

Operations I
(d) Perform operation
(c) Start mem tranf.
(b) Get previous data
(a) Compute new address
(d) Perform operation
(c) Start mem tranf.
(b) Get previous data
(a) Compute new address

I

Extra execution time H Time

due to image correction
"Normal" execution time 1-1

Figure 6

When computing the (qy) coordinates we assume that
each PE has its ucoordinate stored in its internal memory,

i.e, its position in the array. From the program flow we will
then obtain the v-coordinate.

Figure 7 shows the IVIP system with its external data com-
munications. If we interpret [x] as the round value of x we
will have a nearest neighbor selection in the image
memory. The image memory is dual ported.

Data in
Address

Figure 7, NIP system overview

For the case in Figure 2, the address computation consists
of 4 MAC operations, 2 divisions, and some data move-
ment. This takes 8 p for each line given a 12-bit input data.
If we do not perform any other image processing operation
we are able to sustain a frame rate, with 5122 images, of 250
framesls.

Interpolation
In some cases it is not sufficient just to select the value
belonging to the nearest neighbor. An alternative method
is then to perform a linear interpolation using the four
nearest neighbors. Figure 8 shows a case when we want to
compute the f(x,y) value given that we know the values of
the four nearest neighbors.

Figure 8, Linear interpolation

An approximation of f(x,y)=f. can be computed as a '9
weight linear sum of the four neighbors

To perform the operation in (3) on an image line in IVIP,
given that we have the four values foe, fol, fib and fll, takes
1 2 p for both the interpolation and the address computa-
tion which totals 6ms per 5 1 2 ~ frame. It corresponds to a
frame rate of 160 framesls.

Figure 9 shows when different processes occur in time.
Here we can see that the data transfer from the image
memory can be performed concurrently with the "normal"
image operations. This is true as long as the time for the
"normal" execution (d) and the time to compute the new
address (a) is longer than the data transfer time (c).

Operations
I

(e) Perform operation
(d) Interpolation
(c) Start mem tranf.
(b) Get previous data
(a) Compute new address
(e) Perform operation
(d) Interpolation
(c) Start mem tranf.
(b) Get previous data
(a) Compute new address

Extra execution time
due to image correction
"Normal" execution time

H
Time

Figure 9, Operation flow with interpolation

Figure 9 shows that the interpolation computation only
add time to the total execution time if

' (c) < ' (a) + ' (d) + ' (r) (4)

The requirement of hardware to perform linear interpola-
tion is actually very small which is shown in Figure 10. We
need four identical image memories. This means that the
input image should be fed to all these memories. Given an
address (a,b) from the IVIP, the four identical image
memories are addressed with (a&), (a+ l,b), (a,b+l), and
(a+l ,b+l) respectively. The four output result, fij, are
then fed back to the corresponding PE. The 110-register in
IVIP is well suited for this since it consists of 32=4*8 bits.

To IVIP fii = f ([XI + i, bl + I)
I

Figure 10, A straight forward interpolation solution

An alternative solution, in order to save memory, is to
store the image in four different image memory, each four
times as small as the original image, according to the pixel
pattern in Figure 11.

Conclusions

Figure 11, The division of the image into four memories

We can then change the system in Figure 10 by replacing
the simple increment units of the case address, by a slightly
more sophisticated address calculator as in Figure 12. This
unit keeps track on which image memory is which accord-
ing to Figure 11, given a base address [x],[y].

-
Common
image Image memory
input

To IVIP fil = f ([x] + i, b] + j) I

Figure 12, A reduced memory interpolation solution

This work is part of a preliminary study to see if the IVIP
architecture is suitable for this type of application. The
material shown in this paper shows that very little time is
spent by IVIP on image correction and interpolation (6md
frame in the projection case). Given a frame-rate of 25
framesls, less than 15% of the available processing time is
spent on correction and interpolation.

Acknowledgement
The authors would like to thank the Swedish Board for
Technical Development (NUTEK) for financial support.

References

(11 Johanneson M., Astrom A, Ingelhag P., The R W
Image Processing Array, Proc of CAMP93, New
Orleans, USA.

(21 k t r o m Anders, Forchheimer Robert, A Gbbnl
Arithmetic Unit for Linear Arrays of Processing Ele-
ments, submitted to IEEE trans on Computer.

[3] ktr i jm A, Mattias Johannesson, Anders Edman,
Tor Ehlersson, Ulf Nhstrom, Bo Lyckegard, An
Implementation Study ofAirborne Medium PRFDop-
pler Radar Signal Processing on a Massively Pamllel
SIMDprocessor architecture, Submitted for publica-
tion.

