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ABSTRACT

This paper focuses on the structure of stereo models and
the techniques for measuring 3D data from a binocular
visual system. A Gaussian sphere model is derived, which
combines monocular cues with binocular cues by mapping
a 3D space onto two 2D image planes. The determinant of
the Jacobian of the mapping is given and matching is
performed using zero-crossings associated with their
orientation information. The possibility of transferring the
knowledge such as the probability of occurrence of visual
scenes to the matching process from the mapping is
discussed. The triangular geometry of stereoscopic views
is represented in a vector and matrix form, and the
Householder transform is used in calculating depth
information from stereo disparity. The distributions of
error over X, y and z coordinates were analysed, providing
a criterion for evaluating and comparing systems’
performance.

We discuss limitations of our system: unable to cope with
occlusion and transparency. These limitations are
consistent with human stereopsis and in both cases we
need either some high level knowledge or some other cues
such as oculomotor or monocular cues to resolve the
problem.

INTRODUCTION

A process which recovers 3D information from
stereoscopic views has two stages, matching and stereo
calculation. Different methods could be used to recover
(relative) depth information from stereo and its particular
choice depends on the stereo model used in the matching
process. Those which employed the epipolar-line model,
such as Grimson's [1981], can recover depth information
from the base line and stereo disparity using an elementary
geometry of triangulation. Others, like Trivedi’s [1985],
which allow any oprtical axis setting would require a
singular mapping from the 3D space to two 2D images
using more general vector calculations. Javis [1983] gave
a detailed description about acquisition of depth
information in 3D scenes. Brady [1982], and Besl and
Jain [1985] provided an overview of the fields on depth
information and 3D analysis.

The famous random-dot stereograms invented by Julesz
have been used to show convincingly that the calculation of
stereo disparity (in humans) is not based on monocularly
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recognizable forms such as a familiar face. The only
information supplied by random-dots is the spatial
position, which can cause fusion of two eyes easily in
perception. Sufficient as it is, though, spatial features
certainly are not the sole source for matching. Julesz
[1971] gave a random-dot stereogram in which one of the

images is expanded by 15%. Stereopsis can still be easily
obrained, which suggests that some other information, and
particularly monocular information, is important for the
eyes to perform stereo matching. Another intriguing aspect
of binocular vision which has long been observed is
binocular rivalry [Wheatstone 1838], which refers to the
alternating periods of dominance and suppression
occasioned by stimulation of corresponding retinal areas
with dissimilar monocular stimuli. Although there has
been much empirical study of this phenomenon since then,
only a few major theoretical developments have been made
in stereo matching concerning binocular rivalry.

In this paper, we developed a new model which uses both
monocular cues and binocular information for stereo
matching. Images of two views are mapped onto a
Gaussian sphere. The mapping combines monocular
features, like edge and orientation, with binocular features
like fixation axis and the ratio of stereo offset and focal
length of cameras. To simulate binocular fusion and
rivalry we implemented the model using relaxation
labelling.

STEREO MODEL FOR MATCHING

In humans, the two eyes look at much the same region of
visual space. Within this region of binocular overlap, the
two eyes view objects from slightly different vantage
points. By virtue of this lateral separation of the eyes
which gives stereo disparities, humans are able to
discriminate extremely small differences in relative depth,
The stereo disparities include different spatial positions and
orientations which can be used for matching. One problem
in stereo matching using edges and orientations is that
orientations and edges require different coordinate systems.
The results depend critically upon the scale used to measure
each coordinate. We cope with this problem by using
probabilities.

Let us define the vision space as S : XxYxZ, X, Y and Z

< R, and consider an edge of an object passing through a
point (X, y, z). If we represent this edge as an oriented



vector in 3D space, it has an angle 8 with the x axis and an

angle ¢ with the z axis. By using these two angles, the
edge can also be represented as a point on the surface of a
unit sphere, whose origin is (x, y, z). This is known as
the Gaussian sphere [Arnold & Binford 1980], and the
point is located on its surface in terms of spherical
coordinates 0 and ¢. The Gaussian sphere defines a
mapping (Ax, Ay, Az)—(8, ¢). Given a corresponding
pair of edges, one in each image, as shown in Figure 1, we
are interested in how their angles are related and how we
can use this relationship to guide our maiching process.
Although the angles 0 and 8, could be of any values, they
are usually of fairly similar values. This is partly due to a
moderate or a small offset of the baseline,

X
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Figure 1 The Gaussian sphere model for matching

The matching process is to find the corresponding points in
the left image and in the right image. We need clues to
guide the search, even if the clues give only some
possibilities that the features in the left image are related 1o
the features in the right image. The orientation feature
represented by the point on the Gaussian sphere casts a pair

of image angles, (6, 8,), on the left image and the right
image. A continuous function exists for mapping the
points on the Gaussian sphere, with coordinates 6 and ¢,
to the image angles (6, 6,), i.e.6xp — 8x6,, . Similarly,
there is an inverse function P which maps points in the
space 8,0, to points on the Gaussian sphere, 8x¢. From
the probability theorem, the probability distribution of (6,
6,) equals the probability distribution of (8, ¢) multiplying
with the Jacobian determinant of the mapping P [Blake
1979]. If we suppose all edges of objects are randomly

and uniformly distributed in the (8, @) domain, the
probability distribution y of (8, 8,) will be
v(6,,8,) = i !

where A is the area of the definition domain € of (8, ).

This distribution gives a correlation function for 6, and 6,.
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The basic steps of our stereo process can now be stated as:
1. build a geometric model of binocular visual system,
based on the Gaussian sphere,

find a mapping P: Bx8, — 8xg,

{38 ]

3. calculate the determinant of the Jacobian of P
dersp =200 2 20 20 3
d(8,,0,)| 096,08, 96, 06,

4. suppose (0, @) are in a uniform distribution and
calculate the distribution function of (6, 6,),

5. extract features (Bll. Bl;' aivy Glm) from the left
image and features (9,1.9,2. very Ol.n) from the
right image,

6.

perform relaxation labelling on ﬂ‘i and Brj to get an
optimal matching.

The determinant of the Jacobian of the mapping
P: (0}, 8,) — (8, ¢) is derived by
l. find a mapping Q: Ox¢ — B8x8,, with coordinates
(x, ¥, 2),

2. inverse the mapping Q to obtain P by:
2.1 inverse Q under the same coordinates (x, y, z),
2.2 transform (x, y, z) coordinates into (60, ¢)
coordinates, giving the mapping
P: 6,x8, — Bx¢,
3. calculate the Jacobian matrix J of the mapping P,
4. calculate and simplify the determinant Jpl,

When the visual distance z is far enough comparing with
B, i.e. B/z « 1, we have the determinant of the Jacobian
matrix defined as:

yi [(x; - x1) - Beos?6)]
()(]2 - yf +1 xf - yf sin?(0; - 8,)
The detailed deduction can be found in [Jin 1992],

O]

Upl =

It is noteworthy that the mapping P is not a bijective
mapping. It is not defined at (0, 0), as the circle z = 0 of
points on the sphere for which 8 = 0 all map to (0, 0). The
mapping is not invertible at that point, which is why we
use P to represent the mapping 8,x8, — 8x¢@ rather than

Q-!. This fact tallies with the effect in human vision.
When people view a horizontal wire, they often lose their
depth perception. This is because the uniform texture on
the wire wipes out the size perception so that the stereo
matching depends solely on orientation, but the zero
orientations in both eyes fail to stimulate binocular neurons
to cause fusion.

The value of r = 4/x{ + yf in formula (1) represents the
eccentricity of the Jacobian determinant. Mapping factors
reduce eccentrically which tallies with the fact that visual
acuity decreases with retinal eccentricity.

DEPTH CALCULATION

In Trivedi's [1985] model of stereopsis, a siereoscopic



view reflects the geometry of two cameras, as shown in
Figure 2. The stereoscopic area (the dotted area) is the
overlap between the fields of view of the two cameras.

Figure 2 The geometrical structure of a visual system

In three dimensions the supporting matched pairs
corresponding to physical points provide a viewer-centred
scene description called the geometrical descriptive base
[Pollard et al. 1987]. In this base, each point is
represented by a vector R. We shall use an underlined
letter to represent a directional vector, e.g., R, and use a
small superscript zero to mark a unit directional vector,
e.g., R°. We shall use upper case letters to refer to the
scene in three dimensions while lower case letters refer to
the images. Subscripts "(" and "r" refer to the left view
and the right view, respectively. The geometrical origin O
is chosen in the middle of two foci of the left and the right
cameras as shown in Figure 2 without loss of generality,

Considering the four triangles bounded by the pairs of
veetors (£p. zp), (. 2). (R, Zp) and (R, Z,), we have

Lleg = -RVZ =2 - R-5)/Z; )
and
L/z, =@, -RVZ,=Z" - R-5,)Z, 3)

According to the initial setting, we have s = §, - §, i.e.

S=§-8, =z -2V - (1, /2, -Z)Z, 4)
and
2R=- (gl - Z)V2) + (1, /2, -Z)Z,) (5)

Formula (4) is a vector equality in three dimensions. It can
be rewritten as
S =(rgl2p-Z V2, - (v [z, -Z.")Z,
Sy = (r{yf'zr - Z@')Z( - {rry{zr - Zry')Zr (6)
S, =(rp 2y -2V, ~(r [z, -2 )2

r

These are consistent equations, and Z; and Z_can be
obtained by solving these equations. The solution of Z;
and Z, from (6) can be used in (5) to calculate R, which

gives the 3D coordinates of the point in the space of the
scene.

Given the above mathematical model, it is not difficult to
calculate the required depth information. In practice,
however, one faces numerous problems due to imprecise
data. To solve this problem, we introduce an efficient
algorithm using the Householder transform [Strang 1988).
Two Houscholder transforms H, and H; wransform A into
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an upper triangular matrix, and H,H,AZ = H,H S can be
solved by a back substitution. Replacing the solution Z in

(5), we have
-2 (2?, -1y /202 + (25 - Ty 22,

Ry
R=|R,
Rl N @, 1 f20Zi+ (28, - 1 1202,
The derivation of the algorithm using the Householder
transform can be found in [Jin 1992].

(Z‘ir -t l2)Ze+ (2 - 1 [2,)Z,
(N

THE DISTRIBUTION OF ERRORS

One of the fundamental problems in stereo vision is that the
accuracy of the measurements decreases as the distance
increases. In order to find out the distribution of stereo
disparity, we simplify the arrangement of the stereo model.
There is no loss of generality in assuming that the two
image screens are coplanar, and the two x axes parallel to
each other. If we take the focal length f of the two
cameras as a standard unit, we have z, =z =1, Z=2Z, =

Z, and Z;/ =Z,. Wedefine & = ISV/Z, which gives a
parameter to analyse the relation between the distance and
the accuracy of the measurements.

Defining & = I(r; - r,)l, which is stereo disparity, from the

assumption and formula (4), we have 3 = (-1, VZ, i.e.,

S/Z =(r; - 1, ). From the definitions of A and 8,we have
A=IsVZ =/ -, )l =3 (8)

Formula (8) indicates several facts:

First, A = § indicates that a large X gives a large stereo

disparity. Their differentiation 95 = 1 shows that stereo
dd
disparity increases with increasing A.

Second, rearranging (8) we have Isl = 8Z. To calibrate,
suppose there is a setup ervor differentiating Isl over Z, we
dlsl

have — = & 2 (. which means that the accuracy of Z

increases with the value of offset [sl.

Third, for measuring we have 8 = Isl/Z. For a setup

system, i.e. lsl is a constant, differentiating & over Z, we

Isl . .
have {g =- —’e‘{ ., which means the measurement error is
Z

inversely related to the square of the distance.

The error distributions over x and y coordinates are
analysed as follows. From formula (7) and IRl = V(RZ +
R? + R2), partially differentiating IR! and noting that Z is
independent of x and y by definition, we have

diRI - R 3R, _ J—([& ‘L, )zla(-r;ﬂq)

"a-l_ ,‘{R3 + R; + sz ox IRI X

Formula (9) gives the relation between the difference of

9

’ IRI ;
measurements over the x coordinate 8_}_ and the error in
ox
drg+r -
d(ratra) . Rewriting (9), we have

the original data P




aRI_ R, 9Ry_ |
dx .JRE*_R?* RE dx [RI
where (r; +54/2) and (r,, - s,/2) are focusing centres on
the x axis of the left and right views respectively. From

this we can draw an error distribution as shown in Figure
3, where the curves give the equal-error contours.
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Figure 3 The error distribution over the x coordinate

Similarly, the relation over the y coordinate is

dRI _ Ry JR, o 20(righryy)
—_— = YAk o bl
d JRam.m » RS TRET

and its error distribution is shown in Figure 4.

Figure 4 The error distribution over the y coordinate

DISCUSSION AND CONCLUSION

The significance of the mapping is that it defines a relation
between the visual world and the two stereoscopic views,
and combines the monocular features from two views with
the binocular correlation of the stereopsis. The mapping as
defined allows us to manipulate the model in various ways
and reflect several charactenistics of stereo vision in
humans. First, any a priori knowledge about the world,
either from our knowledge of the visual scenes or from the
features extracted monocularly from the stereoscopic
views, can be applied in the mapping. Second, we can
adjust the focus of the view point either to improve the
success rate of the stereo matching or the increased
accuracy of the stereo disparity. The distribution of the
determinant of the Jacobian varies with x;2+y,2 (i.e.
concentrically). Close to the centre, we have a steep
distribution along 8, = 6, which gives more weight for
matching the stereo than that for calculating stereo
disparity, and vice versa.

Our solution to equation (6) is insensitive to errors as a
result of the smoothing effect in the least squares
approximation. The Household transform is an efficient
method for solving equation (6) from the viewpoint of both
space and time.

Increasing the baseline of the two cameras will help
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improve the accuracy of the measurements but this will also
increase the difficulty of stereo matching since more widely
differing views of the object can be obtained. A solution
reducing the problem in the matching process is preferred
since it is the more crucial part of the stereo problem.
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