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ABSTRACT 

En this paprr we present a novel technique for establishing 
a rohusl a n d  arrurat~ rorr~spondence between a 3d model 
and a 2d image. \Vt. present a transform clustering ap- 
proach to i so l a t~  the transformation that maps the mad01 
f ~ a t t ~ r e n  to  the image featur~s .  Tt is shown that this trans- 
form clustering techniqu~ alleviates the prohIerns with  us- 
ing the traditional Hough transform techniqr~es used 'by 
previous researchen. dV'r dcmonstra t~  the ~ffectiveness of 
our approach irk ~st imat ing the position and and pose ofan 
autonomous rnohilp rohot navigating in an outdoor urban 
environn~ent. We prespnt experimental results of test in^ 
this approach using a model of an airport scone. 

Thc task of establishing a reliable and acri~rate correspon- 
dence between an image of x scene and a stored model of 
it ocrl~ra in a large n u m b ~ r  of computer vision problems. 
Autonomous navigation of a mobile robot given n priori 
modd nf the pnvisonment and model- based object recog- 
nition at0 two ~xarnples of romputcr vision tasks in which 
t h ~  niodel-image correspondence needs to be addressed. In 
the contpxt of autonomous navigation, the robot is pro- 
vided with a preloaded world model of t h e  environment. 
The world modcl could be in direrent forms, such as a 
Digilal Elemtian Map IDEM), a CAD description, or a 
flour map. The robot uses a n  onboard camcra t o  image 
the environment . Oncc we establish a carr~spondence be- 
i w w n  the image and the  model, the robot's position and 
pose can be drtprmined. This position information can bp 
used by the robot to SZICCPI(SIUIJ~ navigate in its environ- 
mmt .  In the r o n t ~ x t  of model-based o b j ~ c t  recognition, 
WP are given a geometric description of the object to be 
recognised and an image or the scene in which the object 
is prcs~n t .  The task i s  to isolate the object in the scene 
by using the image. Mod~l-image correspondenc~ are par- 
ticularly diffiri~lr because the image and the model are 
usually in diffccsent formats. diRercnt ro-ordinate frames 
and of different dimensions. 

h popular approach to  solving this problem is t o  ex- 
tract features from the image and search the model de- 
scription for the corresponding set of features. The type 
of It=al~rr~e required and the number oS features used dp- 
pends on the rnod~l  description and what is assumed to 
be knnwu ahout the scene. For example, in navigating the 
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rohot in an indoor s t r r i r t r~ r~d  rnvironm~nt with a g i v ~ n  
CAD n ~ o d ~ l  of the environment, it is common prart ire to 
~ I S P  l i n ~  SPgrnPntc a5 feat I I ~ W  131. On the ot h ~ r  hand,  in 
navigating the robot in an outdoor mountainous l ~ r r a i n  
givm a D E M  nr the ~nvironmcnt, using curves may be a 
10~icd choice [9]. 

TypicaUv, in t h ~ s e  prohl~rns t h ~  modrl and tlir cam- 
era (rottot) are sppcifipd in two different ro-ordinate sys- 
tems. O n c ~  we exlract t h ~  rel~vant featurcs from the im- 
age and identify the corresponding Fcatures in the model, 
WP can romputer the transformation 7 that maps Ihc 
model f~atztr~s into thp image fpatures. The pararnetcrs of 
this transformation are the rcquirrd position and pose of 
the  camrra [robot ) with respect to the model. Solving for 
the pxrarneters of 7 , once a set of model-image irature 
corrtspondences is rstablished, is a very WPII studied prob- 
lem ['Zj. Therefore, t h ~  crucial txsk to  be accomplished 
is that of establishing a reliable and accurate correspon- 
dence. Xoise, occlusions, errors in feature detrction and 
inaccurate modcl dcscriptions further complicate this cor- 
~espondence problem. 

Transfarm Cluatering: Previous r~searchers h a v ~  
considered the technique o l  matching a key model feat u r ~ ,  
such as a long e d ~ e  or a set of lines in specific orientations. 
t o  establish an initial transtormation [ l ,  fi]. Suhwqrtrnt 
assignmpnts are thrn used to refine this  transformation. 
New assignments arc S C ~ P C ~ P ~  on predictions of a model 
feature, projected into the image using tlre cnrrent trans- 
format ion. t lowev~r ,  these techniques assume that it is 
possible to  initially sderi a correct key m o d ~ l  Feature. 
which may not alwavs be possiblc. 

Some sesearch~rs used the generalized H o u ~ h  trans- 
form and its related parameter hashing techniques to per- 
form fmnsJom rlr~st~ring to isolate the transformation 
mapping the modpl f e a t ~ ~ r ~ s  into the image featur~s  16, 
5, ID]. The g ~ n ~ r a l i z ~ d  tlough transform works by first 
quantizing the n-dimmsional parameter spare in to  dis- 
crete huckets or bins. Thc param~ters  are the compo- 
nents describing 7. From tht- given image. Sraturcs arc 
extracted using a feature extractor. Thpn all the pos- 
sible modcl-image f ~ a t u r e  cotrespondences are hypothe- 
sized and, for each hypothesis, the parameter vector is 
computed. For each parameter vector so computed, its 
n components are quantized a r~d  used as indices to  vote 
in one of t h ~  n-dimensional buckets. S~arching for large 
cIustrts is then accomplished by finding the buckets with a 
large nurnhprs of entries. Sometimes it  is possible that one 
correspondence may not give explicitly aU the components 
of the parameter vector. but may only give a rangp of pos- 
sible va lu~s  far ~ a r h  component. In this  case. entries ate 



ma& into all the buckets within range. The a d v a n t a ~ r  of 
this approach i s  that c l u s t ~ r i n ~  provides a robust criterion 
b r  firlrrting d i d  m o d ~ l  fcaturr assignrnmts. The cfbcts 
of miwing or inrotrpcf roature due to occlusion, ahadnws, 
or Inw rontra5t. arp not bit. 

The prohlema associat~d with using the H o u ~ h  trans- 
form approach to  transform rlueterinq are that l a r g ~  trans- 
form clust~ra may occur randomly. IT thesc clustrra are as 

l a r g ~  or I a r ~ o r  than those due to the correct transrorm. 
the estirnalinn proc~durr  that reFica only on the H o u ~ h  
transform will tw Prronmus. If t h ~  nllrnher of hucketrr is 
incrrased, thpn t h ~  po~~ihi!ity of random large c lus t~rs  is 
aIlrviatrd but t h~ ni lmb~r  of corn put ations grows rapidly. 
Grimson [1] summarizes t h ~ s ~  problems with  the RFnPr- 
alirrd 1io11gh transform, 

This pappr pr-pnta a rnrthod to r e d u r ~  t h ~  prob- 
l ~ m r  ~ s o c i a t ~ d  with thr  tfough transform approach to 
tmnsiorrn c lus t~t ing hy ilning a partition of thc parame- 
t r r  space. whirh is not nrcrssarily uniform. The partition 
is, in fact, ~nt~l l tgrnl  and uses a pnon rnodrl informa- 
tion, Due to tttp gmmrtric constraints irnposd hy the 
model and thp campra ~eornetry. not all model features 
may he t.r*tbkr in dl camera positions. Typically orclu- 
sions b ~ t w r m  the model i ~ a t u r w  affect their visibility at 
rariour po~ir  ions. However, since wr know the 3d dwctip 
tionfi of tho rnodpl f~at r l rm,  t h r s ~  ~ ~ o m e t r i l :  consttainta 
can br prr-computed and uard t o  partition the pasame 
tor sparr to reduce I ~ P  probability of the ocrurrrnrr of 
random transform cluatrrs. 

demonstrate t t ~ c  c k t i v e n e s s  of our approach in 
~stirnating t h ~  pmition anrl a n d  pose of an autononious 
rnohilc robot. The robot is assumed to be navigating in 
an outdoor, urban environm~nt.  The 3d description of the 
lines lt hat constitun* the rooftops of the buildin~s is given 
m a aorid modrl. Tbp position and pose of the robot are 
estimated by ~atahlishing a cortespondpncp between the 
linw pxtractpd from the imagc (image fratures) and the 
lines that constitute rooftops of the 1)uildin~s (model tea- 
t u r ~ s ) .  tly rxploiting t he visibility conatrainf s imposed by 
i h r  3d world niodel and the camera Emmetry, we partition 
t h p  paramrtrr space i n t o  into disrinct, non-overlapping w- 
~ i 0 n s  callrd Fdge I'esrbrlity Hegtons (EYRs) [7]. In rach of 
thrsp r~gions ,  w e  also Rtarr thr  list of model featuwri that 
arp visible from within that region. If'e then hypothesite a 
correspondence b ~ t w w n  all pairs of model and i m a g ~  fea- 
turm and romptltr I ~ P  range of possiblc traasiwrmations 
for each hypothesis. lt'c vote in all thp r r~ ions  in the pa- 
rarnetpr sparv wlrer~ this ~ransfotmaiinn I R  d i d .  Alter 
consider in^ all t hc pair~ngs. u * ~  spIprt t ht- r ~ ~ i o n s  in the 
parameter space with  the I a r g  numbers of votes the 
candirlat~ EV Ks lot position estirnafion, The actual cor- 
respondence and position estimation are then pcrfotmcd 
hy a ronstrairl~d search prncrsfl within thesp EVRs us in^ 
a i n t ~ r p r ~ t a t i o n  t r w  search paradigm. 

PARTITIONING THE PARAMETER 
SPACE 

Consider I he world coordinate system OXJ'i! and 
the robot coordinate system O'X7"Zr shown in F i g u r ~  1. 
Generally, thp transformation 7 that transforma 0 4 Y  2 
into O'.YfY'%' has six dwltes  of freedom: t h r e e  rotational 
and t hrpp translational. Sometimes, depending on the ap- 
plita! ion, somc or these d q r m  of Irm-dorn can be elirni- 

Figure 1: Tbr world and robot co-ordinatr systems 

nated. Most mohilr robot self-location tmks make the as- 
sumptinn rhat t h ~  rohot is on t h ~  gro~tnd (04Y plane), 
so the Z-translation (the h ~ i ~ h t  aT the rohot above the 
 round) is assumed to  be known or to  he zero. The ram- 
ora on tho robot is assi~rned t o  have zero roll (rotation 
about X-axis),.and the tilt a n ~ l r :  of the camera, (rotation 
about the Y - i s )  is asurnrd to be meuurable. So, thrrc 
arr  rffrrf ivdy t hrw pararnr t r t~  in the transformat ion: two 
translational (X, Y )  and one rotatianal B [the pan angle 
of tlir camera. wh i rh  is r rotation about the Z-axis). Likr- 
wise. in this paper wp havr only three parametprs of 7: 
X, Y and 8. Thr  parametrr space of tbc trannformatioa 
is thus the r n t i r ~  CIXY plane and f he r a n p  of mbot ori- 
entation B is 0 t h r o u ~ h  360 degrw.  

In  this sr r t~on.  we bri~flg we dwcribe a method for 
partitioning thr  O.YY plane into rq ions  cdled Edge Vis- 
ibility Hqions ( E V R s )  using thc ~ i w n  world model d+ 
srription. f'nr more details sw [TI. A ~ s o c i a t d  with each 
EV It is a list or the world model irati~tes crslbre in that t~ 

gian, cal ld  thc t-iaibility Itnt (\'I,). No two adjacent EVRR 
havp the same 1'L.  A150 stored lor each entry in the 1'1, 
or an EYR is the range or rohot orientations from which 
the f ra t i~re  i s  visiblr. Thus, rach EVR is a region of mpare 
which has the topnlo~ical property that from i ta pointn, 
t hr same set of rrlgrs of the model are visible through 
a complete rirrt~lar $can. The EVR repm~ntat ion pat- 
titions t h ~  ~ n t i r r  parameter space of (X,Y.B) and cap- 
turm thr  vicihility constraints h ~ t w r e n  thr  world model 
features. 

The a l~or i tkm that divides the OXY plane into the 
dmirrd EVfls. along with thrir maociatrd VLs, usw thrw 
suhproc~sacs cdEed Split. Pmj~ct, and ,Werqe. The a l p  
rithm's b a s ~ r  idca is to start with theentire OXY plano as 
onr EVR with a NITLL vi*ihili ty list. Each of t  he polygons 
that makes up the build in^'^ rooftop in the world model is 
ronsidtrcd in turn by extcndiag its edges, and the EVRs 
that ate interseri~ti arp d i r i d ~ ~ l  into two new onm. The 
nrw EVRs then r ~ p l a c ~  the old one, and the Vl-s of the 
new IlYRs a r ~  ilpdatr*tl to account fat the viaihility of this 
d g e  by cansid~ring it t o  be visible in onp half-plane, say 
thp half-planr into the left of the edge, and invisible in 
the ofhpr. Thp Split process handles thin updating. For 
each nPu- roortop considered, thc mutual occlusion 01 the 
mart op's P ~ R P R  with the other existing rooftops is handled 
by forming the .*hadow wgion of t hmo erlgs on the other 
existine, rooftaps. The Pmj~rt  process handles the forming 
aT thrsp shadow regions. Finally, the M r y e  process con. 
ratt-natrs all the adjacent 13'Ra with identical \'LR into 
nnr CVU. After parfitioning the OXY plane into Ei'R.s, 



Figure 2: (a) World model (b) Robot view 

the range of the robot's orientations for which each model 
feature in the VL of an EVR is visible, is also computed 
and stored. An efficient method to compute these ranges 
is also developed. Figure 2(a) shows the world model and 
Figure 5(b) shows the EVR description computed from 
this world model. 

FEATURE EXTRACTION 

In this research, we used a scale model of the Austin Ex- 
ecutive Park Airport to test the position estimation algo- 
rithms developed. The world model thus consists of the 
3d descriptions of the rooftops of the three buildings in 
this airport. Figure 2(a) shows this world model. A cali- 
brated camera is placed in this environment and used to 
acquire the images of the model. These are then used as 
the robot's views. Figure 2(b) shows one such view. We 
use a Canny edge detector to extract the edges from this 
image. Contiguous edges are then linked using a pixel 
chaining algorithm. We then use a line fitting technique 
to form line segments from these pixel chains. These line 
segments are then thresholded by length to remove all the 
lines shorter than 20 pixels. Figure 3(a) shows these lines. 
We use a rooftop eztmction technique to select the lines 
that correspond to the rooftops only. The technique scans 
each column of the line segment image from top to bottom 
and selects the topmost lines only in each column. All the 
lines that lie below, completely within the projection of a 
selected line, are then discarded. The lines isolated using 
this technique are then considered as the image features. 
Figure 3(b) shows these lines. Notice that the image fea- 
ture extraction procedure is far from perfect. Some of the 
lines that correspond to rooftops are not extracted and, 
due to noise and occlusion, some of the extracted lines 
do not arise from the rooftops but from extraneous ob- 
jects such as trees and telephone poles. The task is thus 
to use the transform clustering and the search technique 
to correctly isolate the model features and the noise fea- 
tures from these image features and accurately estimate 
the robot's position and pose in the environment. 

MODIFIED HOUGH TRANSFORM 

Having formed the EVR description of the environ- 
ment and extracted the features from the images, we use a 
modified Hough transform to isolate a small set of EVRs 
likely to contain the robot's location. The EVRs are used 
as a partitioning of the parameter space (X,Y,6') of the 
transformation. We find that this partitioning alleviates 
the problems of traditional Hough transform, namely, the 
random occurrence of large clusters and the resulting need 
for the large amounts of memory required to perform the 

Figure 3: (a) Detected lines (b) Image features 
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Figure 4: EVR no. vs the number of votes 

fine partitioning of the parameter space to eliminate this 
problem. Since it is difficult to accurately extract the end 
points of the rooftops, we use infinite lines and not line 
segments as the image features. The image features are 
2d lines and the model features are 3d lines. Using one 2d 
to 3d line correspondence, we can compute the orientation 
of the robot 6' and get a constraint on the position of the 
robot of the form a x  + bY + c = 0, where a,b, and c 
are constraints. This constraint describes a line L in the 
OXY plane. See [8] for details of the derivation. 

We hypothesize all the possible model-image feature 
correspondences, and for each hypothesis compute the 6' 
and get the constraint line L on (X,Y). We now vote in 
all the EVRs where: 1) the line L intersects the EVR; and 
2) the 0 lies within the range of possible robot orientations 
in the visibility list of the EVR. We finally select the EVR 
with a largest numbers of votes as the candidate EVRs 
most likely to  contain the robot's location. Figure 4 shows 
a plot of the EVR number vs. the number of votes. Figure 
5(a) shows the complete EVR description and Figure 5(b) 
shows the selected candidate with a large number of votes. 

INTERPRETATION TREE SEARCH 

Having isolated the candidate set of EVRs most likely to 

Figure 5: (a) EVR description (b) EVRs isolated by the 
Hough transform 



Figure 6: (a)  Final EEVR (h) Estimated robot location 

Table I: The Search results 

contain the robot's location using the modified Hough 
transform, we now wish t o  iaolate the robot's Iotation 
more precisely arn0ng these EVES. For each of the candi- 
date EFrRs wr form an interpretation tree of all the possi- 
ble modcl-ima~e feature correspondences and t hpn search 
this trees to  isolate the correct set o t  correspondences. 
Kote that  these tree are very short since we only need 
to  consider those model features that are present in each 
EVR's VL. Also by using the geometric constrnints estab- 
lished by the EYR, that is, its extent in the O X Y  plane 
and the range o l  possible 8 values, we can prune large 
parts of this interpretation t rw.  

This search process finally isolates the correct EVR 
containing t h ~   robot'^ location and a set of model-image 
feature correspondences. Using all of these correspon- 
dences in a least squares framework, the robot's position 
and pose are accurately estimated. Figure 6(a) shows the 
EVR isoEated w containing the robot's location and Figure 
6(b) shows the final estimated robot's position. We find 
that the estimated position and pose obtained by these 
techniqum arc qrlite close to their true values. Table 1 
compares the  estimated and the actual values obtained 
Irnm t h p  test runs using the world model shown in Figure 
214. 

CONCLUSIONS 

This paper presented a novel and efficient transform clus- 
tering technique lor establishing a robust and accurate 
correspondence between a 3d model and a 2d image, We 
demonst rate the effect ivcness af this technique in estimat- 
ing the position and pose of an autonomous mobile robot 
in an outdoor urban cnvironmcnt consisting of polyhe- 
dral buildings. I t  is shown that  this transform duster- 
ing technique aIleviates the problems associated with the 
traditional IIough transform techniques used by previous 
researchers. 

Although we have demonstrated the utiIity of the 
t~chnique for the mobile robot selr-location probIem, the 

approach can he easily ex tend4  t a  other computer vision 
tasks such %S model-based object recognition. One pos- 
sible approach is to  precompute the chamctcriaiic vlewe 
or a ~ p r i s  of the object to be recognized and use these to 
partition the parameter space. R p  imposing suitable and 
practical restrictions on the number of degrees of freedom 
in the transformation between the rnodrl and the  imaue 
[ti], the numher of aspects can be kept tractable. Ry se- 
lecting an appropriate set of lcaturw lrom the image and 
using a similar transform clustering approach as described 
in this paper. it is possible to isolate a smaU set of aapecta 
of the object corresponding to the given image. Ueing 
a trw search technique it is then possihle to  establish a 
more accurate rorr~spondence between the irna~fi features 
and the model features and isolate the correct aqpect, and 
tliereby rerognire the  object from the given set of models. 
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