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ABSTRACT

In this paper we present a novel technique for establishing
a robust and accurate correspondence between a 3d model
and a 2d image. We present a transform clustering ap-
proach to isolate the transformation that maps the model
features to the image features, It is shown that this trans-
form clustering technique alleviates the problems with us-
ing the traditional Hough transform techniques used by
previous researchers. We demonstrate the effectiveness of
our approach in estimating the position and and pose of an
autonomous mobile robot navigating in an outdoor urban
environment. We present experimental results of testing
this approach using a model of an airport scene.

INTRODUCTION

The task of establishing a reliable and accurate correspon-
dence between an image of a scene and a stored model of
it occurs in a large number of computer vision problems.
Autonomous navigation of a mobile robot given a priori
model of the environment and model-based object recog-
nition are two examples of computer vision tasks in which
the model-image correspondence needs to be addressed. In
the context of autonomous navigation, the robot is pro-
vided with a preloaded world model of the environment.
The world model could be in different forms, such as a
Digital Elevation Map (DEM), a CAD description, or a
floor map. The robot uses an onboard camera to image
the environment. Once we establish a correspondence be-
tween the image and the model, the robot’s position and
pose can be determined. This position information can be
used by the robot to successfully navigate in its environ-
ment, In the context of model-based object recognition,
we are given a geometric description of the object to be
recognized and an image of the scene in which the object
is present. The task is to isolate the object in the scene
by using the image. Model-image correspondence are par-
ticularly difficult because the image and the model are
usually in different formats, different co-ordinate frames
and of different dimensions,

A popular approach to solving this problem is to ex-
tract features from the image and search the model de-
scription for the corresponding set of features. The type
of features required and the number of features used de-
pends on the model description and what is assumed to
be known about the scene. For example, in navigating the
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robot in an indoor structured environment with a given
CAD model of the environment, it is common practice to
use line segments as features [3]. On the other hand, in
navigating the robot in an outdoor mountainous terrain
given a DEM of the environment, using curves may be a
logical choice [9].

Typically, in these problems the model and the cam-
era (robot) are specified in two different co-ordinate sys-
tems. Once we extract the relevant features from the im-
age and identify the corresponding features in the model,
we can computer the transformation 7 that maps the
model features into the image features. The parameters of
this transformation are the required position and pose of
the camera (robot) with respect to the model. Solving for
the parameters of 7 , once a set of model-image feature
correspondences is established, is a very well studied prob-
lem [2]. Therefore, the crucial task to be accomplished
is that of establishing a reliable and accurate correspon-
dence. Noise, occlusions, errors in feature detection and
inaccurate model descriptions further complicate this cor-
respondence problem.

Transform Clustering: Previous researchers have
considered the technique of matching a key model feature,
such as a long edge or a set of lines in specific orientations,
to establish an initial transformation [1, 6]. Subsequent
assignments are then used to refine this transformation.
New assignments are selected on predictions of a model
feature, projected into the image using the current trans-
formation. However. these techniques assume that it is
possible to initially select a correct key model feature,
which may not always be possible.

Some researchers used the generalized Hough trans-
form and its related parameter hashing techniques to per-
form transform clustering to isolate the transformation
mapping the model features into the image features |[6,
5, 10]. The generalized Hough transform works by first
quantizing the n-dimensional parameter space into dis-
crete buckets or bins. The parameters are the compo-
nents describing 7. From the given image, features are
extracted using a feature extractor. Then all the pos-
sible model-image feature correspondences are hypothe-
sized and, for each hypothesis, the parameter vector is
computed. For each parameter vector so computed, its
n components are quantized and used as indices to vote
in one of the n-dimensional buckets. Searching for large
clusters is then accomplished by finding the buckets with a
large numbers of entries. Sometimes it is possible that one
correspondence may not give explicitly all the components
of the parameter vector, but may only give a range of pos-
sible values for each component. In this case, entries are



made into all the buckets within range. The advantage of
this approach is that clustering provides a robust criterion
for selecting valid model feature assignments. The effects
of missing or incorrect features due to occlusion, shadows,
or low contrast, are not felt.

The problems associated with using the Hough trans-
form approach to transform clustering are that large trans-
form clusters may occur randomly. If these clusters are as
large or larger than those due to the correct transform,
the estimation procedure that relies only on the Hough
transform will be erroneous. If the number of buckets is
increased, then the possibility of random large clusters is
alleviated but the number of computations grows rapidly.
Grimson [4] summarizes these problems with the gener-
alized Hough transform.

This paper presents a method to reduce the prob-
lems associated with the Hough transform approach to
transform clustering by using a partition of the parame-
ter space, which is not necessarily uniform. The partition
is, in fact, intelligent and uses a priori model informa-
tion. Due to the geometric constraints imposed by the
model and the camera geometry, not all model features
may be wvisible in all camera positions. Typically occlu-
sions between the model features affect their visibility at
various positions. However, since we know the 3d descrip-
tions of the model features, these geometric constraints
can be pre-computed and used to partition the parame-
ter space to reduce the probability of the occurrence of
random transform clusters,

We demonstrate the effectiveness of our approach in
estimating the position and and pose of an autonomous
mobile robot. The robot is assumed to be navigating in
an outdoor, urban environment. The 3d description of the
lines that constitute the rooftops of the buildings is given
as a world model. The position and pose of the robot are
estimated by establishing a correspondence between the
lines extracted from the image (image features) and the
lines that constitute rooftops of the buildings (model fea-
tures). By exploiting the visibility constraints imposed by
the 3d world model and the camera geometry, we partition
the parameter space into into distinct, non-overlapping re-
gions called Edge Visibility Regions (EVRs) (7). In each of
these regions, we also store the list of model features that
are visible from within that region. We then hypothesize a
correspondence between all pairs of model and image fea-
tures and compute the range of possible transformations
for each hypothesis. We vote in all the regions in the pa-
rameter space where this transformation is valid. After
considering all the pairings, we select the regions in the
parameter space with the large numbers of votes as the
candidate EVRs for position estimation. The actual cor-
respondence and position estimation are then performed
by a constrained search process within these EVRs using
a interpretation tree search paradigm.

PARTITIONING THE PARAMETER
SPACE

Consider the world coordinate system OXY Z and
the robot coordinate system O'X'Y'Z’ shown in Figure 1.
Generally, the transformation 7 that transforms OXY Z
into O'X'Y'Z" has six degrees of freedom: three rotational
and three translational. Sometimes, depending on the ap-
plication, some of these degrees of freedom can be elimi-
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Figure 1: The world and robot co-ordinate systems

nated. Most mobile robot self-location tasks make the as-
sumption that the robot is on the ground (OXY plane),
so the Z-translation (the height of the robot above the
ground) is assumed to be known or to be zero. The cam-
era on the robot is assumed to have zero roll (rotation
about X-axis),.and the tilt angle of the camera, (rotation
about the Y-axis) is assumed to be measurable. So, there
are effectively three parameters in the transformation: two
translational (X,Y) and one rotational # (the pan angle
of the camera, which is a rotation about the Z-axis). Like-
wise, in this paper we have only three parameters of 7T:
X,Y and 6. The parameter space of the transformation
is thus the entire OXY plane and the range of robot ori-
entation @ is 0 through 360 degrees.

In this section, we briefly we describe a method for
partitioning the OXY plane into regions called Edge Vis-
ibility Regions (EVRs) using the given world model de-
scription. For more details see [7]. Associated with each
EVR is a list of the world model features visible in that re-
gion, called the visibility list (VL). No two adjacent EVRs
have the same VL. Also stored for each entry in the VL
of an EVR is the range of robot orientations from which
the feature is visible. Thus, each EVR is a region of space
which has the topological property that from its points,
the same set of edges of the model are visible through
a complete circular scan. The EVR representation par-
titions the entire parameter space of (X,Y,d) and cap-
tures the visibility constraints between the world model
features.

The algorithm that divides the OXY plane into the
desired EVRs, along with their associated VLs, uses three
subprocesses called Split, Project, and Merge. The algo-
rithm’s basic idea is to start with the entire OXY plane as
one EVR with a NULL visibility list. Each of the polygons
that makes up the building’s rooftop in the world model is
considered in turn by extending its edges, and the EVRs
that are intersected are divided into two new ones. The
new EVRs then replace the old one, and the VLs of the
new EVRs are updated to account for the visibility of this
edge by considering it to be visible in one half-plane, say
the half-plane into the left of the edge, and invisible in
the other. The Split process handles this updating. For
each new rooftop considered, the mutual occlusion of the
rooftop’s edges with the other existing rooftops is handled
by forming the shadow region of these edges on the other
existing rooftops. The Project process handles the forming
of these shadow regions. Finally, the Merge process con-
catenates all the adjacent EVRs with identical VLs into
one EVR. After partitioning the OXY plane into EVRs,



Figure 2: (a) World model (b) Robot view

the range of the robot’s orientations for which each model
feature in the VL of an EVR is visible, is also computed
and stored. An efficient method to compute these ranges
is also developed. Figure 2(a) shows the world model and
Figure 5(b) shows the EVR description computed from
this world model.

FEATURE EXTRACTION

In this research, we used a scale model of the Austin Ex-
ecutive Park Airport to test the position estimation algo-
rithms developed. The world model thus consists of the
3d descriptions of the rooftops of the three buildings in
this airport. Figure 2(a) shows this world model. A cali-
brated camera is placed in this environment and used to
acquire the images of the model. These are then used as
the robot’s views. Figure 2(b) shows one such view. We
use a Canny edge detector to extract the edges from this
image. Contiguous edges are then linked using a pixel
chaining algorithm. We then use a line fitting technique
to form line segments from these pixel chains. These line
segments are then thresholded by length to remove all the
lines shorter than 20 pixels. Figure 3(a) shows these lines.
We use a rooftop ertraction technique to select the lines
that correspond to the rooftops only. The technique scans
each column of the line segment image from top to bottom
and selects the topmost lines only in each column. All the
lines that lie below, completely within the projection of a
selected line, are then discarded. The lines isolated using
this technique are then considered as the image features.
Figure 3(b) shows these lines. Notice that the image fea-
ture extraction procedure is far from perfect. Some of the
lines that correspond to rooftops are not extracted and,
due to noise and occlusion, some of the extracted lines
do not arise from the rooftops but from extraneous ob-
jects such as trees and telephone poles. The task is thus
to use the transform clustering and the search technique
to correctly isolate the model features and the noise fea-
tures from these image features and accurately estimate
the robot’s position and pose in the environment.

MODIFIED HOUGH TRANSFORM

Having formed the EVR description of the environ-
ment and extracted the features from the images, we use a
modified Hough transform to isolate a small set of EVRs
likely to contain the robot’s location. The EVRs are used
as a partitioning of the parameter space (X,Y,#) of the
transformation. We find that this partitioning alleviates
the problems of traditional Hough transform, namely, the
random occurrence of large clusters and the resulting need
for the large amounts of memory required to perform the

581

Figure 3: (a) Detected lines (b) Image features
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Figure 4: EVR no. vs the number of votes

fine partitioning of the parameter space to eliminate this
problem. Since it is difficult to accurately extract the end
points of the rooftops, we use infinite lines and not line
segments as the image features. The image features are
2d lines and the model features are 3d lines. Using one 2d
to 3d line correspondence, we can compute the orientation
of the robot # and get a constraint on the position of the
robot of the form aX + bY 4 ¢ = 0, where a,b, and ¢
are constraints. This constraint describes a line L in the
OXY plane. See [8] for details of the derivation.

We hypothesize all the possible model-image feature
correspondences, and for each hypothesis compute the
and get the constraint line L on (X,Y). We now vote in
all the EVRs where: 1) the line L intersects the EVR; and
2) the @ lies within the range of possible robot orientations
in the visibility list of the EVR. We finally select the EVR
with a largest numbers of votes as the candidate EVRs
most likely to contain the robot’s location. Figure 4 shows
a plot of the EVR number vs. the number of votes. Figure
5(a) shows the complete EVR description and Figure 5(b)
shows the selected candidate with a large number of votes.

INTERPRETATION TREE SEARCH

Having isolated the candidate set of EVRs most likely to
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Figure 5: (a) EVR description (b) EVRs isolated by the

Hough transform
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Figure 6: (a) Final EVR (b) Estimated robot location

Actual Actual Estimated Estimated | EVR |
Position Pose deg Position Pose deg No.
[ (875,410) 0 874.93,411.29 1,03 (7
[750,1010) -30 752.45,1016.21 32.02 90
[~ (900,50) 5 901.74,49.54 48T 8
_(Lsoo_,s‘m 5 748,63,800.12 -4.58 B

7@"3&:‘]_ 15 1324,27,1047.46 | -16.14 89 |
" (350,1400) | -90 | 352.13,1404.67 -92.27 94
" (460,1400 75 460.15,1406.14 TR.04 a1
425,1460 85 428.57,1454.21 B8.13 93

1350,800 -8 1351.12,896.14 “14.21 8|
1476,800 0 1480.11,605.26 1.02 69

Table 1: The Search results

contain the robot’s location using the modified Hough
transform, we now wish to isolate the robot's location
more precisely among these EVRs, For each of the candi-
date EVRs we form an interpretation tree of all the possi-
ble model-image feature correspondences and then search
this trees to isolate the correct set of correspondences.
Note that these tree are very short since we only need
to consider those model features that are present in each
EVR's VL. Also by using the geometric constraints estab-
lished by the EVR, that is, its extent in the OXY plane
and the range of possible # values, we can prune large
parts of this interpretation tree.

This search process finally isolates the correct EVR
containing the robot’s location and a set of model-image
feature correspondences. Using all of these correspon-
dences in a least squares framework, the robot’s position
and pose are accurately estimated. Figure 6(a) shows the
EVR isolated as containing the robot’s location and Figure
6(b) shows the final estimated robot’s position. We find
that the estimated position and pose obtained by these
techniques are quite close to their true values. Table 1
compares the estimated and the actual values obtained
from the test runs using the world model shown in Figure
2(a).

CONCLUSIONS

This paper presented a novel and efficient transform clus-
tering technique for establishing a robust and accurate
correspondence betiween a 3d model and a 2d image. We
demonstrate the effectiveness of this technique in estimat-
ing the position and pose of an autonomous mobile robot
in an outdoor urban environment consisting of polyhe-
dral buildings. It is shown that this transform cluster-
ing technique alleviates the problems associated with the
traditional Hough transform techniques used by previous
researchers,

Although we have demonstrated the utility of the
technique for the mobile robot self-location problem, the
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approach can be easily extended to other computer vision
tasks such as model-based object recognition. One pos-
sible approach is to precompute the characteristic views
or aspects of the object to be recognized and use these to
partition the parameter space. By imposing suitable and
practical restrictions on the number of degrees of freedom
in the transformation between the model and the image
[6], the number of aspects can be kept tractable. By se-
lecting an appropriate set of features from the image and
using a similar transform clustering approach as described
in this paper, it is possible to isolate a small set of aspects
of the object corresponding to the given image. Using
a tree search technique it is then possible to establish a
more accurate correspondence between the image features
and the model features and isolate the correct aspect, and
thereby recognize the object from the given set of models.
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