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ABSTRACT
An essential research objective in artificial vision are

shape descriptors which are invariant for translation, scale
changes and rotations of a bidimensional pattern. A vari-
ety of approaches has proved the capacity to characterize
forms, like signatures, 1-D Fourier descriptors, moment
invariants, Complex-log (Log-polar) transform or Fourier
transform. None of these techniques can claim a general
purpose applicability to every kind of 2-D pattern.

In this paper a method is proposed for the shape de-
scription of arbitrary complex forms that are composed by
parametric curves. This constraint of representability is
satisfied for most patterns. Regions with holes e.g. can
equivalently be characterized by the contours of the sig-
nificant parts (boundaries, holes).

A method, denoted as UNL transform performs a nor-
malization operation for translation and scale changes and
causes rotations to appear as periodic translations in the
transformed representations of the pattern. It creates an
optimal input for a 2-D Fourier image transform which
yields the numerical descriptors called UNL Fourier Fea-
tures. It permits the mapping of any shape to a single vec-
tor (or point in a n-dimensional space),

The distinctive character of the approach will be point-
ed out, especially to the Complex-log transform.

The analytic theory of the UNL transform is intro-
duced, together with practical concepts to apply it in the
discrete case where a pattern is given as a bitmap. Finally
experimental results for a classification task are presented
together with conceptual limitations of the approach.

INTRODUCTION

Bidimensional black and white shapes are either char-
acterized by their contours and/or by their region if they
posses an area. The digit “5” is an example for the first
category of patterns and a box with a hole inside for the
second category. This most general classification [1]
determines if a certain form descriptor method can be
applied for the characterization of the pattern or not. In
order to evaluate the improvement that our method repre-
sents compared with already existing methods, a bench-
mark pattern is proposed. The stylized head of a robot in
fig. 1 will be used for this purpose. Parts of it could be
modelled by a region-based technique, like the head with
eyes, nose and mouth, The antenna however are only rep-
resentable by curves.
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For a general overview about shape representation
methods consult [1], [2], [4]. [5]).

Signatures [1], [3], [6] are only applicable locally to
parts of the test pattern. The eyes, nose, mouth and bound-
aries of the head can be represented as signatures. The an-
tenna and most important the figure as a whole are not
mappable to a single signature. Besides concave bound-
aries are an insurmountable limit for this approach. That
restriction of only local applicability is also valid for
Chain codes [1], [7] and polygonal approximations [1],
[8], [9). Fourier descriptors (FD) [1], [10], [11] have sim-
ilar limitations as signatures. For each primitive form that
composes the test pattern a proper FD is necessary. No
global Fourier series is available to store the form of the
pattern in its totality. A further drawback of FDs are that
the patterns in general are limited to closed curves.

Fig. 1 Test pattern,

Moments (normalized central moments) are used to
describe 2-D images [1], [12]. They are invariant to TSR
transformations (translations, scale and rotations). A rep-
resentative application of moments together with FDs to
recognize airplane silhouettes can be found in [13]. See
also [14],[15],[16]. Like the 2-D Fourier transform and the
Complex-Log transform which will be characterized be-
low, moments are image oriented features. Basically one
can state that the input for moment invariants are pixel
values sampled at a certain image point (x,y). Moment in-
variants are not generated by analytic information about
the object geometry, but rather by an instantiation of an
object on a 2-D pixel matrix. The shape transformations
(TSR) are tried to be compensated for, regarding the pixel
values. For our test pattern the method of moment invari-
ants is only partially suited because the pattern consists
only of fine lines. In all experiments that were based on
moment invariants the patterns had an interior region.
This suggests the empirical conclusion that moments are
not appropriate to describe patterns where only boundary
information is available.



Special attention must be paid to the Complex-Log
transform (Log-polar transform) because it has some char-
acteristics in common with the UNL transform. The basis
for this form descriptor is the simulation of mapping struc-
tures commonly found in the visual system of human be-
ings [17],[18],[19]. In [20] the Log-polar transform was
successfully applied for 2-D shape recognition. A further
analysis was performed in [21], where especially the
drawbacks were mentioned. For an application in charac-
ter recognition see [22]. This technique will be directly
compared to the UNL transform in the next section.

The 2-D Fourier transform (FT) of an image is a valu-
able tool for the analysis of objects inside a scene. The FT
is also pixel oriented, like moments and the Complex-Log
transform. The input for the FT is a pixel value sampled
from an image coordinate: f{x,y). For an introduction to
the FT see e.g. [1] and [2]. Its major drawback for direct
pattern recognition is its rotation variance, If only transla-
tions of objects in a scene occur the magnitudes of the FT
are invariant, The UNL transform will produce an image
in which at most periodic translations appear on one axis.
Therefor we will use the FT to produce the final shape de-
scriptors, the UNL Fourier Features. For our test pattern
the FT applied directly to the original image is not an ap-
propriate shape descriptor.

In order to complete the overview of existing 2-D
shape descriptors one should also mention syntactic tech-
niques [23] and autoregressive models [24],[25].

THE UNL TRANSFORM

In this section we will draw the mathematical frame-
work for our 2-D pattern descriptor. What distinguishes
the proposed method from other shape representation
schemata, especially the Complex-Log transform? The
most important attribute of the UNL transform is its ana-
lytic approach to perform a pattern transformation. It im-
plements a coordinate transform for parametric curves
from Cartesian to normalized polar coordinates. The ana-
Iytic equations of the pattern curves must be known to be
able to transform the pattern. If these equations are not
known a priori which in practice is mostly the case, they
must be estimated. This estimation is based on a binary
pixel image.

Definition

A formalization is given for the UNL transform and
the UNL Fourier Features. Mathematical details will be
shifted to the respective appendices. The notion of com-
plex numbers will be used to represent 2-D coordinates.
This allows a concise formalism. Hence a Cartesian point
(x,y) is represented by a complex number z = x+jy.

Definition I: Let an object Q2 be composed by a finite
set of smooth parametric curves z(r) in the Cartesian co-
ordinate system:

EQI
let O = (0,, O,) be the centroid of all curves (appendix A)

Q) = Uz z() =x(0)+jy(n re (0,1)
i=]

and let M be the maximum Euclidean distance from O to
all curve points:
EQ2

M =max{[|z(n -0||} Vi=1.n 1€(01)

Then a coordinate transform U for each curve z(1) exists
which represents the object in a normalized polar coordi-
nate system with origin O.
EQ3
U:((0,1) =2C)=((0,1) =C)

U(z(r)) =R(1)+jx0(n)

-0l . y(n -0,
oM m(x{f}—c',]

Lemma 1 (Proof in Appendix B): The transformed ob-
ject U(S2) is invariant to translations of Q by the offset Az
and invariant to scale changes by a scalar a. A rotation
about any point z, by the angle A8 has no effect on R and
causes a 2n-periodic translation of 8 by A8 (cyclic shift).

N.B.: The operator U maps curves to curves by a coordi-
nate transform (U: (Curve)— (Curve)). It does not map a
single point from the Cartesian plane to the polar plane.

Definition 2: Let U(£2) be the UNL transformation of
object , let the pointset! be the image (trace) of U(Q), i.e.
the image of all parametric curves that compose U(£2) (ap-
pendix C).

Then the magnitudes of the 2-D Fourier transform of / are
the UNL Fourier Features (UFF).

Theorem 1: The UNL Fourier Features are invariant to
translations, scale changes and rotations of the original
object Q2.

Proof: This is true following the translation theorem of the
Fourier transform and Lemma 1.

Example of an UNL Transform of a Curve Pattern

For the test pattern of fig. 1 the analytic UNL trans-
form is presented. The calculus of the transformed pattern
was analytically performed by Mathematica [26]. The
centroid falls inside the nose. The maximum distance
from the centroid appears two times at the end of the two
antenna. The three “blobs™ in the middle are the trans-
formed eyes and mouth. The four peaks are the head and
the two spikes are the transformed antenna. Correspond-
ing points are labeled with the same character in both the
original and transformed pattern. As an example consider
point f. The vector from the centroid to f has an angle of
45 degrees (1/4) to the horizontal reference axis and has a
distance to the centroid of about 75% in relation to the
maximum distance at point a or b.
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Fig. 2 UNL Transform of the test pattern.
Comparison UNL Transform - Log-Polar Transform

The differences between the UNL transform ({/) and
the Log-Polar transform (Complex-Log transform) (L)
must be explicitly stated because both techniques have
some approaches in common.

Both seek a translation normalization by shifting the
centroid of the object pattern to the origin of a polar coor-
dinate system. Both map from originally Cartesian coor-
dinates to polar coordinates.

The fundamental differences however are:

Application Constraints: While U can be applied to
every pattern composed of curves, L is limited to patterns
which posses a region. For the test pattern of fig. 1 L is not
suited, e.g. it could not meaningfully be used to transform
the antenna,

Subject of Mapping: L maps image points through a
mathematical function to other image points. A complex
coordinate z is transformed to [n z. The axes of the original
(x.y)-pattern change to (In|lzl/,8). U is “just” a coordi-
nate transform. It does not change the value of z but rather
represents it in another coordinate system.

Mathematical Operations: L calculates In z, which
yields another complex number. U is mathematically an
identity operation. The value of z is invariant.

Scale invariance: U is analytically scale invariant for
every positive scale factor. The limitations only occur in
the discrete pixel matrix when the scale factor becomes
too big. L is only obviously scale invariant. In [21] the
problem of stretching is highlighted. Since the scaled co-
ordinate a*z is transformed to In z+In a [20], the trans-
formed pattern not only dislocates its pixels but also
distorts them. This defect only permits the application of
L under moderate scaling conditions. Particular problems
occur when the centroid's coordinates of the pattern fall
inside the area of an object’s hole. In this case it becomes
very hard to match the pattern with the prototypes without
using heuristics. In [20] “useless pixels” are cut and in
[21] it is tried to compensate for the stretching with a
Laplacian filter.

CALCULATING UNL FOURIER FEATURES IN
PRACTICE

In practice the pattern is given as a binary bitmap,
without any a priori knowledge about the intrinsic mathe-
matical definition of the pattern curves. The pattern is ap-
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proximated by all linear curve segments
2 = (+1(x,—=x))) +j(y +1(y—y))
between two neighboring pixels of the pattern
z; = x;+jy,and z, = x,+jy,.

Hence once again an analytical description is avail-
able. In order to be able to define a line segment a thinning
of the original pattern is necessary, e.g. by the algorithm
in [27]. The centroid of the pattern is now the mean of all
pattern coordinates: O = (x,y,), i = 1...#pixels .

The pattern is scanned once. If a pair of pixels is found the
line segment is transformed by EQ3:

re (0, 1)

[ (xp ##(xy=x)) =0, ) +jy +1(y,~y)=0,) |
U -
(2(1) v

Y +tly, =y "'0‘.
+jx atan(-—————-;]
x +I(Iz—.tl) "Ox

The parameter ¢ is discretized into sufficiently small steps
in the interval (0,1). The only restriction is that no gaps in
the transformed pattern may appear.

The DC component of the pixel matrix represents the
basic signal energy. This is the Fourier magnitude for both
polar parameters equal to zero: F(0,0). This magnitude has
always the maximum values of all magnitudes. Conse-
quently we normalize all other magnitudes by dividing
them by F(0,0).

LIMITATIONS

The method assumes an ideal segmentation if the
source images are non-binary, but so do other well estab-
lished methods as well, e.g 1-D Fourier descriptors. On
the other hand patterns are often a priori only black and
white, e.g. printed digits. In this case no segmentation is
necessary, See [31] for an application of the UNL trans-
form to handwritten characters.

The UNL Fourier Features are sensitive to occlusions,
The set of parametric functions is changed abruptly if
parts of the whole object are missing. Consequently the
centroid and the UNL transform of the original pattern
change completely and the UNL Fourier Features yield
garbage values.

EXPERIMENTAL RESULTS

We present the results for a real world pattern classifi-
cation task. A set of objects is presented to a standard 2-D
vision system. The digital grey level images are segment-
ed into binary images. From there the contours of the ob-
jects are extracted. The contour data is stored in files
which are transferred to a workstation where higher level
processing is performed.

Hardware: Anindustrial general purpose imaging sys-
tem is used for frame grabbing and early vision. The
Magiscan2 from Joyce Loebl [28] receives the analogous
image signal from a conventional CCD-camera (Panason-



ic: Model WV-1500/B) and digitizes it to a 6 bit 512x512
pixel matrix. The vision system performs low level imag-
ing to extract the 1 bit binary shape image. The Magiscan2
is controlled by a PC/AT. The binary contours are moved
to a DECstation 3100 from Digital Equipment running un-
der UNIX.

Contour Extraction: Images which failed to be seg-
mented properly were purged, e.g. when holes appeared
where the object has none or parts of the background were
segmented into the object area. A mixture set of ideal 2-D
paper sheet and other 3-D objects was used (fig. 3). The
camera position was varied from an initial distance of
0.6m with lcm increases. The segmentation was histo-
gram based. After the segmentation, the horizontal chord
segments were scaled by a constant linear factor of 1.088
in order to try to compensate for the distortion of a general
purpose TV camera. The system calls of the vision system
were used to extract the boundaries of the objects respec-
tively of their holes. The whole set of images for one class
was stored in a file and then transferred to the workstation.

SR NGO ®
NP2
VD)

Fig. 3 The Benchmark Universe

Feature and Classifier Model: The original resolution
of 512 was normally scaled down to a smaller resolution
in the workstation environment. The preprocessing steps
(thinning) were performed and finally the discrete UNL
Transform of the pattern. The resolution of the polar coor-
dinate system was the same as for the Cartesian coordinate
system. Finally the UNL Fourier Features were calculat-
ed.

For each feature a Gaussian probability distribution
was assumed. Hence the mean and standard deviation for
each feature were estimated from the available training
samples.

The totality of the samples was aleatorily split into
75% training data and 25% test data. The total number of
samples per class were about 200. Over the whole feature
pool a preselection was done to divide them into “good”
and “bad”. This quality label was based on an average in-
terclass distance measure using the following heuristics:

Quality = e o B
c(c=1)

EQ4
B u'.+oj]1:|
i-lj-i+l[l (ll,—llj

where ¢ is the number of classes and y; and o; are the mean

e~1 ¢
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and standard deviation for class i. The heuristics is the av-
erage interclass distance for all possible class pair combi-
nations. The interclass distance between two classes is
based on Chebychev's inequality. This formula results in
a ranking between 0% and 100% for each feature. The
heuristics makes the simplifying assumption that features
are mutually independent which for a multivariate distri-
bution is not true. On the other hand it allows to give a
good rule of thumb for the potential of one feature to sep-
arate classes. Thus it is possible to order the features fol-
lowing this quality criteria.

For the preselected pool the values of all feature vec-
tors were calculated. The feature selection based on mul-
tivariate analysis of covariance [29] finally determined
which features were used for classification. The feature
selection was initialized with that preselected feature that
had the highest quality. Then the next feature was select-
ed, joined to the selected pool and so on.

The number of selected features was based on a mini-
mal estimated error rate using the leave-one-out method
[30].

A nearest-neighbor classifier was applied for identifi-
cation. Euclidean distance measure was used to establish
an decision making function to determine to which class
the unknown sample belonged to. No data reduction over
the whole set of samples was performed. That means that
an unknown sample compared to each of the known train-
ing samples.

Experiment: The general purpose classification perfor-
mance of the UNL Fourier Features is tested. The param-
eters and results are presented in table 1. The samples
were scaled from a resolution of 512 down to 256, The 13
classes were represented by 1928 samples. The pictures
were taken from 10 different camera positions. The num-
ber of the preselected features was fixed at 100. From this
pool 8 features were selected for the universe of objects
under observation which were used for training and clas-
sification. The estimated recognition rate was 100%. For
the 481 test samples the apparent recognition rate was also
100%.

It can be observed that the classifier performs well for
the symmetric objects 5 and 6. Also the very similar ob-
jects 4,9 and 13 are separated well (they differ only in one
hole).

APPENDIX

A. Centroid of a finite set of parametric curves.
The common centroid O of an object (t) which is com-

posed by n smooth parametric curves

() =x () +jy (0, i=1l...n is:
EQ-Al
2
T Juo| @ ||de
0=(0,0)= =12
bR Iﬂi,-(l)”dl
i=1 0

The condition of smoothness is necessary to derive the



curve at every point. Furthermore it implies that the pat-
tern is broken up into several curves at non continuous

points.

B. Proof of Lemma 1.

Translation: Substitute z;(r) by z; (1) +Ar and calcu-
late the new values for O, M, taking into account that At
does not depend on t. Then EQ3 yields invariant values
for U(z;(r).

Scaling: Multiply z,(r) by the positive real scalar a.
Analogous case to translation.

Rotation: Substitute z; (1) by exp (jo)z, (1) where ¢
is an angle by which the pattern is rotated about 0. A
rotation about any point can be split up into a translation
1o O, the rotation and inverse translation. Calculate the
new values for O, M. It can be proved that for the polar
angle 6

an (8 (z(n)exp(jo)) = anb(z(s) +9) which
is equivalent to a cyclic shift of the transformed pattern.

C. Image of a curve.

I(z(n) =(peC| z(1) =p.Vie (0,1) }

This pointset is what we normally consider as the
curve. It can be understood as an instantiation or materi-
alization of the curve by variation of its parameter in the
respective interval (0,1).
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