MvA's2

IAPR Workshop on Machine Vision Applications

Dec. 7-9,1992, Tokyo

PARALLEL ANALYSIS OF NON CONVEX SHAPES
DIGITIZED ON THE HEXGONAL GRID

Gunilla Borgefors, Swedish Defence Research Establishment*
Gabriella Sanniti di Baja, Istituto di Cibernetica, CN.R.”

* Box 1165, S-58111 Linképing, Sweden; Gunilla@lin.foa.se
® Via Toiano 6, I-80072 Arco Felice (Napoli), Italy; Gabry@gabry.na.cnr.it

ABSTRACT

Two parallel algorithms for convex polygonal covering
of shapes digitized on the hexagonal grid are presented.
Both algorithms require operations having a local support
of a 6-pixel neighbourhood. The first algorithm computes
a polygon with at most six sides, oriented along the six
principal directions in the hexagonal grid. The second
algorithm computes a nearly convex polygon, which fits
the shape closely. The latter algorithm is less sensitive to
pattern rotation and is thus more suited to practical applica-
tions. The concavity regions are obtained by computing
the difference between the covering polygon and the shape
itself. A concavity tree can then be built, by iteratively
applying the polygonal covering algorithm to the concavity
regions themselves. The nodes of the concavity tree can be
labelled with parameters, related 1o geometrical features of
the corresponding regions. The concavity tree is a useful
tool for automatic visual inspection. It can also be used for
identifying shapes.

INTRODUCTION

Shape is a key feature of digital patterns in binary images.
It is necessary to describe and classify shapes, both for
recognition and quality control applications. Long and thin
shapes can be described using skeletons. Some shapes can
be decomposed into a number of simple basic shapes.
However, for some thick, complex shapes, neither method
is suitable. The concavity analysis we present here can be
an attractive altermative. The concavity regions are identi-
fied by subtracting the shape from a convex polygon cov-
ering it. We assume a massively parallel architecture using
the hexagonal grid, where each processing element is con-
nected to its six neighbours,

The concavity tree, that can be built from the shape
when the concavity regions have been identified, gives a
hierarchical description in terms of concavities and meta-
concavities (i.e., the concavities of the concavities). The
concavity tree can be used as a tool for automatic visual
inspection, since it may allow identification of local defects
in the silhouettes of industrial parts. It can also be used for
identifying shapes in clothing and leather industries, where
many irregular shapes have to be sorted before they are
joined, [1].

There are many reasons why the hexagonal grid is
preferable to the more common square grid:

« A digitized shape is more stable under rotation, as
this grid has three principal directions, rather than
only two.

* This grid is more suitable for rounded shapes.

« Each pixel has six "equal” neighbours, equal in the
sense that the 4-neighbour/8-neighbour connectivity
problem does not occur.

= In a parallel architecture each pixel has to be con-
nected to only six neighbours, compared to eight in

5567

the square grid case.
The last reason has, in fact, resulted in a number of exist-
ing and projected massively parallel image processing
architectures using the hexagonal grid, [7]. )

The main computation in deriving the concavity tree is
the construction of the covering polygon. Polygonal
covering can be obtained by computing the convex hull, or
by filling shape concavities. The latter approach is
computationally convenient when a massively parallel
architecture is available. It can be implemented by an
iterative algorithm which, at each iteration, identifies and
ascribes to the shape, pixels from the background located
within concavities.

The shape of the computed covering polygon depends
on the local support of the performed operations. In [4] we
suggested the use of a labelling technique, used together
with a propagation process, that allows you to obtain a
nearly convex covering polygon using only 3x3 opera-
tions. In [5] a hierarchical version of the algorithm is pre-
sented, together with a number of suggested concavity
properties, that can be easily computed once the concavity
regions are identified. These previous algorithms are all
constructed for the square image grid.

Here we describe two algorithms for computing the
covering polygon for the hexagonal grid. The first algo-
rithm gives a convex covering polygon with at most six
sides, aligned along the principal directions of the hexago-
nal grid. The second algorithm computes a nearly convex
polygon, which fits the shape much better. Both algo-
rithms employ operations with the same local support,
i.e., the six neighbours of each pixel.

We also compute the concavity tree, and exemplify
some concavity region properties that can be used for
recognition and analysis.

FILLING CONCAVITIES

Let P be a digital shape digitized on the hexagonal grid.
We assume that P consists of one connected component
and does not touch the frame of the array. The pixels in P

are called "black”. The complement of P is denoted P. The

pixels in P are called "white".

The smallest neighbourhood in the hexagonal grid is
shown in Fig. 1. Each pixel p has six neighbours nj (i=1,
6) sharing an edge with it. The set of pixels in the neigh-
bourhood of p is denoted N(p).

Q9
0@0@@

Figure 1. The neighbourhood of a pixel p.



The border of the shape, B, is the set of white pixels
having at least one black neighbour. For any border pixel

p. Zp(p) denotes the number of black pixels in N(p).
In Fig. 2 the border pixels of a shape are labelled with

their corresponding Zp. It can be seen that pixels along a
straight line segment, oriented along any of the six princi-

pal directions in the hexagonal grid, have Zp=2 (bottom
right). Thus, the pixels bordering protrusions have Zy<2

and pixels placed within concavities have Zy>2.

To build the covering polygon, all the concavities of P
have to be filled in. This can be done by iteratively chang-
ing the colour of all border pixels placed in concavities

from white to black. These pixels are identified by their Zy
value.

The first suggested algorithm for filling the concavities
is the following:

Hexagonal covering
1. Compute Zp for all white pixels.

2. Change the colour of all pixels with Zp=3.
3. Repeat from 1 until no changes occur.

Using this rule results in a covering polygon that has at
most six sides, i.e., is a hexagon. Any pixel p of the outer
border of the polygon is either located along a straight line
segment aligned in any of the six principal directions

(Zp(p)=2), or is placed at the meeting point between two

such straight line segments (Zy(p)=1). An example show-
ing the performance of this algorithm is illustrated in Fig.
3. The hexagonal grid is simulated by shifting the pixels in
every even row by half a pixel.

Due to the small number of directions permitted for the
sides of the covering polygon, it can not fit the shape
closely. Furthermore, the covering polygon may drasti-
cally change if the shape is rotated. Thus, a different num-
ber of differently structured and shaped concavity regions
would be computed for the same shape, depending on its
orientation. For shape analysis, this may be a significant
problem.

To get a better approximation of the convex hull of the
shape, we must derive curvature information from a local
support larger than a 6-pixel neighbourhood. It is obvious

that pixels with Zp24 should always be changed and that
pixels with Zy<2 should never be changed. However,

border pixels with Zp=3 can be located both along straight
lines (not oriented along any of the principal directions)
and in concavities, see right edge and bottom dent in

Figure 2. The border pixels of the shape labelled with the
number of their black neighbours.

558

Figure 3. A shape, black, and its covering polygon, grey,
as computed by the hexagonal covering algorithm.

Fig. 2, respectively. Thus, the pixels with Zp=3 should
be changed only in some configurations.

The problem of computing the convex hull can be for-
mulated as follows: any direction of the sides of the cover-
ing polygon must be allowed. If we allow sides with
"runs” of two pixels, see the right edge of Fig. 2, we must

not change pixels with Zp(p)=3 having two neighbours
valued 1. As the neighbours of p get their values from
their neighbours, checking the neighbours of p is equal to
deriving curvature information from a neighbourhood with
radius two, e.i., with 18 pixels.

If we also allow sides with runs of three pixels, see the
upper right edge of Fig. 2, we need information from an

even larger neighbourhood. The pixels with Zp(p)=3 in
the straight line is located between a 1 and a 2. But this is

also true for the two pixels with Zp(p)=3 in the lower left
corner in Fig. 2 and these pixels are clearly located within
a concavity. The difference is that in the latter case the

neighbour n with Xp(n)=2 has, in its turn, a neighbour q

with Zp(q)22. This is not true in the first case. Thus, if we
also check neighbour of neighbours, we derive informa-
tion from pixels up to three pixels from p along the outer
border, i.e., we use a 36-pixel neighbourhood.

It is relatively easy to efficiently derive information
from a 36-pixel neighbourhood. This is the reason why
we chose this level of information propagation along the
border. Thus, we will fill all concavities that can be
identified using a 36-pixel neighbourhood. To simulate a
36-pixel neighbourhood by means of the 6-pixel
neighbourhood N(p), each iteration of the concavity ﬁplling
algorithm is split into three sub-iterations, denoted
Labelling, Propagation, and Filling.

During the Labelling sub-iteration, the white pixels are
labelled with the corresponding value of Ip. Labelling
allows the simulation of an 18-pixel neighbourhood, as the
value of a neighbour carries information from its neigh-
bours.

Any border pixel labelled 3 that has either one neigh-
bour labelled (at least) 3 or two neighbours labelled 2
should be changed to black. A pixel labelled 3 that has two
neighbours labelled 1 remains white. The two rules above
handle all possible configurations in which a pixel p with
Zp(p)=3 can occur, except the case where p has one
neighbour labelled 1 and one neighbour labelled 2. To
resolve this case, the 36-pixel neighbourhood is needed.
To be exact, we need to know the labels of the neighbour

of p with Zp(n)=2. The Propagation sub-iteration will
provide this information. Let Z(p) denote the sum of the



labels of the white neighbours of a border pixel p. Every

white pixel p with Zp(p)=2 for which Zy(p)25, is marked
in some suitable way (e.g. by multiplication with -1),

The Filling sub-iteration changes the colour of the
appropriate border pixels.

The enhanced algorithm for filling the concavities
becomes:

Polygonal covering algorithm
Labelling:
Label all white pixels with their Zp values.

Propagation:
Mark all pixels with Xy = 2 for which Ly 2 5.

Filling:
All white pixels with Iy 2 4 are changed to black.
All white pixels with Zp = 3 with

at least one pixel labelled 2 3 in N(p), or
two pixels labelled 2 in N(p), or
one marked pixel in N(p)

are changed to black.

Repeat from the Labelling step until no changes occur.

An example of the performance of this algorithm is
given in Fig. 4, where the covering polygon of the same
shape as in Fig. 3 has been computed. The covering poly-
gon is now much closer to the convex hull of the shape.
The increased number of permitted sides (with respect to
the six sides of the first algorithm), makes this polygonal
covering less sensitive to shape orientation.

The covering polygon computed by this algorithm is,
unfortunately, not quite convex. "Weak" concavities can
occur, The smallest angle that will not be filled occurs at
the vertex between two allowed straight lines. The worst
case occurs when a side consisting of runs of length two
meets a side consisting of runs of length three. The label
configuration becomes ...1-3-1-3-1-3-2-1-3-2-1..., where
the meeting point is printed in boldface. This central pixel
will not change colour. The angle at this point is [180 -
(arctan(v3/2) - 30)]° = 169° 6'. It should be noted that
deriving information from an even larger neighbourhood
will not improve this result, as the two directions meeting
at this angle will still be allowed. The result may even
become worse, as even more directions would be allowed.

Figure 4. A shape, black, and its covering polygon, grey,
as computed by the polygonal covering algorithm.

559

ANALYSING CONCAVITIES

The shape of the covering polygon itself can be used to
describe the global shape of the shape. However, to
achieve a more detailed description, the regions of the
polygon, whose pixels do not belong to the shape, should
be analysed.

First, the set difference between the polygon and the
shape is computed, to detect the concavity regions. These
regions can be labelled, using a parallel connected compo-
nent labelling algorithm the concavity regions can be
labelled differently. Thus, a number of different features
can be computed for any one of the regions.

The area is computed as the number of pixels in the
region,

The perimeter is computed as the number of pixels
having a neighbour outside the region. The perimeter is
composed of two sections, denoted the external perimeter
and the inrernal perimeter, respectively. The external
perimeter consists of the pixels having neighbours in the
complement of the polygon. The internal perimeter is
defined as the remaining pixels in the perimeter.

The depth of the region can be computed using a dis-
tance transform, that computes the distance between a fea-
ture set and all other pixels. Distance transforms for the
hexagonal grid can be found in [2]. The simplest one is the
honeycomb distance, where the distance between two pix-
els is equal to the number of steps in a path between them
(cf. the city block and chessboard distances in the square
grid). An efficient parallel algorithm for computing the
distance transform is found in [3]. If the distance between
the complement of the covering polygon and the pixels in
the concavity region is computed, then the highest distance
value in the region will be equal to its depth. Note that we
must use a constrained distance ransform, [6], where the
original shape acts as a barrier.

A concavity region is depicted in Fig. 5. The honey-
comb distance from the background has been computed.
For this concavity we have: Area = 36, Perimeter = 29,
External perimeter = 4, Internal perimeter = 25, and Depth
= 10. These values give an easily computed characteriza-
tion of this concavity, that can be used both for recognition
and quality control.

Some concavity regions are characterized by an area
o?ual to or only slightly different from the external section
of the perimeter or, equivalently, by a very small depth.
These regions can, in most cases, be disregarded. They
can be interpreted as very shallow concavity regions filled
in to remove contour noise, and they could possibly disap-
pear if the shape is rotated.

Significant regions have the property that the internal
section of the perimeter exceeds the external section and
that they have some depth. Such concavities may be non-
convex, and hence structured. A more sophisticated anal-

Figure 5. A concavity region with distance values from the
background (at left).




ysis of this type of regions can be performed. The poly-
gons covering the structures concavity regions themselves
can be computed, using the same process as that applied to
the original shape. In this way, for each concavity region,
meta-concavities are identified (if they exist). Note that
each concavity region has to be individually analysed.
Otherwise, merging between pattern components separated
by narrow channels could occur. The concavities and their
meta-concavities can be linked, to create a meta-concavity
tree, see [5]. This meta-concavity tree contains much
information on the original shape.

CONCLUSION

The algorithms discussed in this paper can be used to
compute an almost convex covering polygon for any non-
convex shape digitized on the hexagonal grid. In the algo-
rithm that yields the most closely fitting covering polygon,
curvature information is derived from a 36-pixel neigh-
bourhood, even though only a 6-pixel neighbourhood is
used at each step. The concavity regions of the shape can
be identified and subsequently analysed. The fact that the
covering polygon fits the shape closely makes the com-

uted concavities very stable under shape rotation. A num-
r of easily computed concavity features are suggested. A
concavity tree can also be built, by running the algorithm
on the extracted concavities themselves. The algorithms
presented are intended for massively parallel architectures.

Acknowledgment

This work has been partially sup&olrlcd by the "Progetto
Finalizzato 'Sistemi Informatici e Calcolo Parallelo™ of the
National Research Council of Italy.

REFERENCES

[1] B.G. Batchelor, "Using concavity trees for shape
description," Computers and Digiral Techniques, 2,
pp. 157-167, 1978.

[2] G. Borgefors, "Distance transformations on hexagonal
grids," Pattern Recognition Letters, 9, pp. 97-105,
1989,

[3] G. Borgefors, T. Hartmann, and S.L. Tanimoto,
"Parallel distance transforms on pyramid machines:
theory and im&:cmcmation." Signal Processing, 21,
pp. 61-86, 1990.

[4] G. Borgefors and G. Sanniti di Baja, "Filling and
analysing concavities of digital patterns parallelwise,"
in VisuafForm Analysis and Recognition, C. Arcelli,
L.P. Cordella, and G. Sanniti di Baja Eds., Plenum,
New York, pp. 57-66, 1992,

[5] G. Borgefors and G. Sanniti di Baja, "Methods for
hierarchical analysis of concavities," Proc. 11th Int.
Conf. Pattern Recognition, The Hague, The Nether-
lands, III, pp. 171-175, 1992,

[6] J. Piper and E. Granum, "Computing distance trans-
forms in convex and non-convex domains,” Patrern
Recognition, 20, pp. 599-615, 1987.

[7] S.R. Sternberg, "An overview of image algebra and
related architectures,” Integrated Technology for
Parallel Image Processing, S. Levialdi, Ed., Academic
Press, London, pp. 79-100, 1985.

560





