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ABSTRACT the souare mid case. 

Two pmllcl algorithms for convex polygonal covering 
of shapes di~itized on the hexsgonal grid are presented. 
Both algorithms requise operations having a locat suppnn 
of a 6-pixel neighhot~rhood. The f i s t  algorithm computes 
a polygon with at most s i x  sides, oriented along the six 
principal directions in the hexagonal grid. Thc second 
algorithm computes a nearly convex polygon, which fits 
the shape clorcly. The latter algorithm is less sensitive to 
pattern rotation and is thus more suited to pnctical appliw- 
t~ons. The concavity regions ate obtained by computing 
thc difFerence ktween the covering polygon and the shape 
itself. A concavity tree can rhcn be bu~lt, by iteratively 
applying the polygonal covering algorithm to the concavity 
regions ~hemselves. The n d e s  of the concavity m c  cnn k 
I:~hcllcd with pnramerers. rc1:ited to geometrical feamtts of 
the corrcsponding regions. Thc concavity tree is a useful 
fool For automatic visual inspection. I t  can also he used for 
identifying shapes. 

INTRODUCTION 

Shape is a key fcature of digital patterns in bin'uy images. 
I t  ic nccesqary to describe and classify ~hapes. both for 
recognition and quality controI applications. Long and thin 
shapes can be descrikd using skeletons. Some shapes can 
bc dccornposed into a number of simple basic shapes. 
Howcver. for some thick, complex shapes, neither method 
is suitahle. 'The concaviry analysis we present here can be 
an attractive alternative. The concavity regions are identi- 
fied by suhaacting the shape from a convex polygon cov- 
ering it. We assume a massiveIy parallel architechire using 
the hexagonal grid, where each processing elcment is con- 
nected to its six neiphhours. 

The concavity tree. that can $e built from the shape 
when the concavity regions have been identified. gives a 
hierarchical descsiprion i n  terms of concavities and meta- 
concavities: I I .~ . ,  the concavities of the concavitrer). The 
concaviry tree can be used as a no01 for automatic visual 
inspection. since it  may allow identificarion oi  local defects 
in the silhouettes of industrial pms. I t  can also be used for 
identifying shapes in clothing and leather industries. where 
many irregular shapes have to be sorted before they are 
joined, 1 1  I. 

Therc are many reasons why the hexagonal grid is 
preferable ro the more common square grid: 

A digitized shape is more stable under rotation, as 
this grid has three principal directions. ra~her than 
only two. 

* This grid is more suitahle for rounded shapes. 
Each pixel has six  "equal" neigh'oaurs, equal in the 
sense that the 4-neighhourlR-neighhour connectivity 
problem does not occur. 
In a parallel architccturc each pixel has to k con- 
nected tn only six neighhurs, compared to eiphr in 

The last reison &s, in fact. resulted in a number of exist- 
ing and projected massively parallel image processing 
architectures using the hexagonal grid, [73. 

'ihe ma~n computation in deriving rhe concavity tree is 
the construction of the covering polygon. Polygonal 
covering can be obtained by compl~ting the convex hull ,  or 
by filling shape concavities. The latter approach is 
compu tationally convenient when a massively parallel 
architecture is available. It can be implemented by an 
iterative algorithm which, at each iterntion, identifies and 
ascribes to the shape, pixels from the background located 
within concavities. 

The shape of the computed covering poTygon depends 
on the Iwal suppon of thc performed operations. In 141 we 
suggested the ilse of a labelling techn~qzie, used together 
with a propagation pnxess. that allows you to obtain a 
nearly convex covering polygon using only 3x3 opera- 
tions. In [S] a hierarchical version of the algorithm I S  pre- 
sented, together with a number of suggested concnvity 
properties, that can k earily computed once the concavity 
regions are identified. These previous algorithm!. are all 
constructed for the square imape grid. 

Here we describe two algorithnls For computing the 
covering polygon for the hexagonal grid. The first a l p  
rithm gives a convex covering polygon with at most six 
side% aligned along rhe principal directions of the hexago- 
nal grid. 'lhe second algorithm computes a nearly convex 
polygon, which fits the shape much better. Roth algo- 
rithms employ operations with the same local support, 
i-e., the s i x  ne~ghbours of each pixel. 

We also compute the concaviry tree, and exemplify 
some concavity region properties that can be used for 
recognition and analysis. 

FILLING CONCAVITIES 

Let P be a digital shape digitized o n  the hexagonal grid. 
We assume that P consists of one connecred component 
and dces not touch the frame of the array. The pixels in P 
are called "black". The complement of P is denoted The 

pixels in Fare called "white" 
The smallest neighbornhood in the hexagonal grid i s  

shown in Fig. I .  Each pixel p has six neighhum n, (i = 1. 
6) sharing an edpc with it. The set of pixels in the neigh- 
b u r h o d  of p is denoted N(p). 

F i ~ l u e  1 .  The neighhourhood ofa pixel p. 



The border of the shape, B, is the set of white pixels 
having at least one black neighbour. For any border pixel 
p, &(p) denoles the number of black pixcls ia N(p). 

In  f ig .  2 the border pixels of a shape arc laklled with 
their corresponding Cb. It can be seen that pixels along a 
stmight line segment, oriented along any of the six princi- 
pal directions in the hexagonal grid, have &=2 (bttorn 

tight). Thus. the pixels bordering protrusions have &.b<2 
and pixels p tacd  within cuncavities have -2. 

To build the covering polygon. dl the concavities of P 
have to k filled in. This can be done by iteratively chang- 
ing the colour of all border pixels placed in concavities 
from white to black. These pixels ate identified by their & 
value. 

The first suggested algorithm fot filling the concavities 
is the foIlowing: 

Hexagonal eoverlng 
7 .  Compute J& for all whlte pixels. 
2. Change the colorrr of all pixels with -3, 
3. Repeat from f until no changes occur. 

Using this rule results in a covering polygon that has at 
most six sides. i-e.. is a hexagon, Any pixel p of the outer 
b tde r  of the polygon is either located along a straight line 
segment aligned in any of the six principal directions 
(Cb(p)=2), or is placed at the meeting point between two 

such straight line segments &(p)=l). An example show- 
ing the performance of this algorithm is illustrated in Fig. 
3. The hexagonal grid is sirnulared by shifting the pixcls in 
every even row by half a pixel. 

Due to the small number of directions permitred fm the 
sides of !he coverlng polygon, it  can not f i t  the shape 
closely. Furthermore, the covering polygon may drast 1- 

cally change if the shape is rotated. 'Fhus, a different num- 
ber of differently structured nnd shaped concavity regions 
would he computed Ior the same shape, depending on its 
orientation. For shape analysis, this may lx a significant 
problem. 

To get a better approximation of lthe convex hull of the 
shape, we must dtnve curvature infomarion from a locat 
suppon larger than a &pixel neighbourhd. It is obvious 
that pixels with Z e 4  should always be changed and that 
pixels with Cb12 shouId never be changed. However, 
border pixels with Zb=3 can be located h t h  along saaight 
lines (not oriented dong any of the principal directions) 
and in concawilies, see right edge and bottom dent in 

Figwe 2. The hr&r pixels of zhe sltopt laklled with fhe 
number ajrheir hIack ntliglthours, 

Figwe 3. A shape, black, and its cover in^ p o h n n ,  grey, 
as computed by die hexa~ona! covering algarirhm. 

Fig. 2, respectively. Thus, the pixels with &=3 should 
be changed only in some configurations. 

The problem of computing the convex hull can bc for- 
mulated as Follows: any direction of the sidcs of nht cover- 
ing plygon must be allowed. I f  we aIlow sides with 
"runs" of two pixels. see the right edge of Fig. 2, we must 
not change pixels with Zb(p)=3 having two neighburs 
valued 1. As the neighburs of p net their values from 
dteir neighburs, checking the neiggbours of p is equal to 
deriving curvature information from a ncighbourhd with 
radius two. e.i.. with 1 R  pixels. 

If we also dlow sidcs with runs of three pixcls, sct the 
uppcr right edge of Fig. 2. we need information from an 
even larger neighbourhood. The pixels with Zh(p)=3 in 
the saaipht line is located between a 1 and a 2. But this is 
also true for the two pixels with &(p)=3 in the lower left 
corner in Fig. 2 and these pixels we clearly lwated within 
a concavity. The djffcrence is that in the latter case the 
neighbur n with &(n)=2 has, in its turn, a neigbbour q 
with &,(q)22. This is not me in the first case, Thus, if we 
atso check ncighbour of neighbours, we derive infoma- 
tion from pixels up to three pixels from p along the ourer 
border, i.e., we u s e  a 36-pixel n e i g h b u r h d .  

11 is  relatively easy to efficientIy derive informatiom 
from a 36-pixel neighbourhcmd. This is the reason why 
we chose this level of information propagat ion along the 
border. Thus, we will fill all concavit~es that can be 
identified using a 36-pixel neighbourhd. To s imulate  a 
36-pixel  neighbourhood by means of rhe 6-pixel 
neighbourhood N{p), each iteration of the concavity filling 
algorithm IS split into three sub-iterations, dene~cd 
S n k l l i q ,  Propagarion, and Fillin#. 

During the LakIling subireration. the white pixels arc 
labeIled with the corresponding value of Zb. Labelling 
allows the simulation of an l R-pixel neighbourhood. as the 
value of a neighbour carries informatinn from its neigh- 
b u r s .  

Any border pixel labeIled 3 that has eirher one neigh- 
b u r  labelled (ar leas!) 5 or two neighbours labelled 2 
should be changed no black. A pixel labelled 3 that has two 
neighburs labelled 1 mmains white. The two rules a b v e  
handle all possibIe configuntions in which a pixel p with 

can occur, except the case where p has one 
ndghbour labtlled I and one neighbour labelled 2. To 
resolve [his case, rhc 36-pixel neighhoushmd is needed. 
To be exact. we need to know the 1:ilxls of the neighhour 
of p with Zb(n)=2. The Propagation sub-iteratien will 
provide this information. Let &(p) denote the sum of the 



labels of the white neighburs of a border pixel p. Every 
white pixel p with Zb(p)=2 for which L(p355, is marked 
in some suitable way (e.g, by multiplication with - 1 ) .  

The Filling sub-iteration changes the colour of the 
appropriate b r d e r  pixels. 

The enhanced algorithm for filling the concavities 
becomes: 

Polygonal eoverlng algorithm 

Labelling: 
tabel all white pixels with their & values. 

Propagation: 
Mark all pixels with & = 2 for which & 2 5. 

Atl white pixets with & '2 4 are changed to black. 
All white pixels with Q = 3 with 

at least one pixel labelled 2 3 In Nlp), or 
two pixels labelled 2 in N(p), or 
one marked pixel tn N(p) 

are changed to btack. 

Repeat from the Labelling step until no changes occur. 

An exampIe of the performance of this aIgorjthrn i s  
given in Fig. 4. where the covering polygon of the same 
shape as in Fig. 9 has been computed. The covering poly- 
gon is now much closer to the convex hull of the shape. 
The increased number of permitted sides (with respect to 
the six sides of the first algorithm), makes this polygonal 
covering less sensitive to shape onentarion. 

Thc covering polygon computed by this algorithm is, 
unfonunatel y, not quite convex. "Weak" concavities can 
occur. The smallest angle that will not be filled occurs at 
thc venex between two allowed siraight lines. The worst 
cast occurs when a side consisting of runs of length two 
rncets a side consisting of runs of length three. The labe! 
configuration kcomes . . . l-3- 1-3-1: -3-2- 1-7-2- 1 .  .., where 
the meeting po~nt is printed in hldface. T h i s  central pixcl 
will not change colour. The anglc at this point is 1 lXO - 
(arctan(a12) - XI)]" = 169" 6'. It should he noted that 
deriving infomation from an even larger neighburhood 
will not improve this result, as the two direcrions meeting 
a1 this angle will still be allowed. The resl~lt may even 
hcom worse. as even more direcdons would k allowed. 

Fi~ure  4. A shape, black, and iu covering polygon, grey, 
ar cnmptried hy rhe poiygonul cnver in~ algorirlun. 

The shape of the covering polygon itself cm k used to 
describe the global shape of the shape. However, to 
achieve a more detailed description. the regions of the 
poIygon. whose pixels do not belong to the shape,  should 
h analysed. 

First. the set difference between the potygon and the 
shape is computed, to detect the concavity regions. These 
repons can bc labelled, using a parallel connected compa- 
nent labelling algonthrn the concavity regions can be 
labelled differently. Thus, a number of different features 
can be cmpi~ted For any one d the regions. 

The area i s  computed as the nurnkr of pixels in the 
region. 

The perimerer is computed as the number of pixels 
having a neighbur outside the region, The perimeter is 
compased of two sections, denoted the m r n a l  perimeter 
and the infernu/ perimeter, respectively, The external 
perimeter consists of the pixels having neighhurr; in the 
complement of the polygon, The internal perimeter is 
defined a.; the remaining pixels in the ~rirneter. 

The deprh of the region can be computed using a dis- 
tance transform, that computes the distance beween a fea- 
ture set and all other pixels. Distance transforms for the 
hexagonal grid can k ffound in 121. The simplest one  is the 
honeycomb distance, where the distance between two pix- 
els is equal to the number of steps in a path between them 
(cf. the city block and chessboard distances in the square 
grid). An efficient pnrallel algorithm lor computing the 
distance aansforrn is found in 131. Ff [he distance ktween 
the complemenr of the covering polygon and the pixels in 
the concavity region is computed. then the highesr distance 
value in the region will be equal to i ts depth. Note that we 
must use a constrained distance transform. [61, where the 
originaI shape acts as a barrier. 

A concavity reglon is depicted in Fig. 5. The honey- 
comb distance from the background has been computed. 
For this concavity we have: Area = 36, Perimeter = 29. 
Extmal perimeter = 4, Internal perimeter = 25, and Depth 
= 10. These values give an easily computed characteriza- 
tion of [his concavity. that can he used both for recognition 
and qua11 ty conml. 

Some concavity regions are characterized by an area 
equal t o  or only sligh~ly different from thc external secdon 
of the perimeter or, equivalently, by a very small depth. 
These regions can, in most cases, be disregarded. They 
can be interpreted as very shallow concavity regions filled 
in 10 remove contour noise, and they could possibly disap- 
pear if the shape is rotated. 

Significant regions have the propeny that the internal 
section of the perlrnettr exceeds the external section and 
that they have some depth. Such concavities may be non- 
convex, and hence srrrdctured. A more sophisticated anal- 

Figwe 5. A concaviry region wirh disrunce vaiuesF;om rlre 
hack~round (or lefi). 



ysis of this type of regions can be perf&. The poly- 
gons covering the structures concavity regions themselves 
can be computed, using the same process as hat applied to 
the original shape. In this way, for each concavity region, 
meta-concav~tics art identified (if they exist). Note that 
each concavity region has to k individually analysed. 
Otherwise, merging between panem components separated 
by n m w  channels could occur. The concavities and their 
mera-concavitres can be linked, to cteate a mcta-concavity 
tree, see 151. This  mtta-concavity tree conrains much 
information on the original shape. 

CONCLUSION 
The algorithms discussed in this paper can Ibe used to 

compute an almost convex covering polygon for any non- 
convex shape digitized on the hexagonal: grid. In the algo- 
rithm that yields the most closely firring coveting polygon, 
curvature information is derived from a %-pixel neigh- 
burhood, even though only a &pixel neighhourhoorl is 
used at each step. The concavity regions of the shape can 
be identified and subsequen~ly analysed. The fact that the 
covering polygon fits the shape closely makes the com- 
puted concavines very stable under shape rotation. k num- 
ber ofeasiIy computed concavity features arc suggested. A 
concavity me can also be built, by running the algorithm 
on the extract4 concavities themselves. T h e  algorithms 
presented are intended for massive1 y parallti arch~rectures. 
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