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ABSTRACT 

The key issue in motion estimation and tracking an 
object over a fieqwnce of images is establishing correspon- 
dpncp betwen the features of the object in the different 
images of t hr sequence. For range image spquences, this 
problem translates into finding a match between the sur- 
face segments in a pair of ranRe images of the scene. This 
paper considers the problem of establishing rorrespon- 
dences h e t w n  surlaces in a sequence o i  range images. N'e 
prpaent a novel procedure for finding correspondence and 
show the results a n  real range image sequences. h graph 
search procedur~ forms the basis lar the algorithm that 
computes the rorr~spondcnce bvtwwn surfaces. The solu- 
tinn usen grometrical and topological information derived 
from t h ~  s r ~ n e s  to direct t h~ search procedure. Fundamen- 
t a l  t a  our strategy to match features over a seqrlence of 
ranw images is a hypergraph representation of the scenes. 
Two scenPs arr modcled as hyp~rgraphs and t h e  hyper- 
edges are matched using a suh-graph isomorphism algo- 
rithm. The hietarrhicd rrprrsentalion of hypergraphs not 
only rrdures the search space significantly, brtt also facil- 
itates the encoding of the topological and geometrical in- 
formation. R ~ r t h ~ r .  we present a sub-hypcrgrap h isomor- 
phism p r o r ~ d i ~ r p  to  ~ ~ t a h l i s h  the corr~spond~nces  between 
the s u r f a r ~  patchrs and drrnonstrate the a l~or i t  hrn an dif- 
ferent t y p ~ s  of tral r a n p  imagt. spquences. We present re- 
s~lfts t h a ~  show that the algorithm is robust and performs 
well in prPaPncP of occlusions and incorrect segmentations. 

The key issue in motion   stir nation and tracking an 
object o w r  a SequPncP of images is establishing correspon- 
dcnce between the features of the object in the different 
i m a ~ e s  of the sequence. Fn this paper we deal with the 
tracking of objerts in a sequence of range images to esti- 
mate t hc motion of the camera (range smsor) in the envi- 
ronment. Rangc irnap;es sense the surfacr of the objects, 
so it is natural to use stirface a~grnents as the features of 
interest: this translates the tracking of objects into finding 
a matrh h ~ r w ~ c n  the surface segments in a pair of ranRe 
images of I hp scenp. This paper considers the finding OF 
correspondences between aurfac~a in a sequence of range 
image<. Finding rnrrespondenrp or a matrh bptween fea- 
tures is not i sola t~d to  ohject tracking, but ia also centrd 
to  other computer vision tasks ~ncEuding navigation. oh- 
jerl recognition, target tracking, and map building, We 
present a novel p roced i~ r~  for estabIishing correspondence 
and slrow tho rcsults on real range image sequences. 

h graph search procedure forms the hnqis far the alp-  
rit hrn that computes t hc correspondence betwwn surfaces. 
The solution uses geometrical and topolo~ical information 
derived From the scenes to  direct t h e  search procedure. In 
general, the input to the matching algorithm i s  the output 
from a s~grnentation a l~or i thm that partitions the image 
into surface srgments. The performance of the matching 
depends greatly on the results or the segmentation algo- 
rithms. Incnrrpct s~grn~ntat inn causes poor estimation of 
the surface parameters and aff~ctfi the performance of the 
match in^ algoritlim. We address this iasuc and obtain a 
~olotion that i s  rohusr and able to handle occli~sinns of 
fiurfaces, noisr in data, and incorrect segmentation from a 
segment ation alaorit hm. In the present implementation, 
we asslrmf that  the images have planar, cylindrical and 
conical surfaces; however, the procedure is general enough 
to  be extended to other surface classes. 

The quation of finding correspondences between lea- 
tures h a  bwn studied rxtensivelg (see (1, 3, 4, 51) but, 
most of these approaches deal with matching a scene to a 
model of the object. The fundamental differ~nce between 
rnodp1-to-scme matching a n d  scene-to-scene matching is 
that  in the former, t h ~  model drscription of the o b i ~ c t  is 
complete, and to  that we match the incomplete descrip- 
tion of the abject ohtained from the scenp. However. in 
the case o i  scent- to-scent. matching, both d~scriptions of 
the objpct are incornplet~ and we must find a match be- 
tween two incomplete d~srriptions. By incomplete. we 
mean that  all t h p  features arc not present in the descrip- 
tion ol the object bcrausc of occlu~ions and sensor errors. 
This difference makes it impossible to use the strateeies 
obtained for object recognition in the  domain of object 
tracking; new s t ra t~gies  h a d  on the constraints of the 
problem b a v ~  to be designed. 

Fundamental t o  our s t r a f~gy  to match features oveT 
a sequence of range i rna~es  is a h~pergraph representa- 
tion of the scenes. The two scenes are modrled as hgper- 
graphs and the hyperedges arp matched using a sub-graph 
iaomorphism algorithm. To reduce the complexitv of the 
matching task, h~uristics derived from the  topologiral and 
the geometrical information available from the scme are 
used to d~rect  the search. Tbp hirratrhical renrewntation 
of hypergraphs not only reduces the search space signifi- 
cantly, but also facilitates the encoding of the topoiogical 
and geometrical iniormation. Hyperedges are formed bv 
grouping the surface features, which r educ~s  the search 
space. Using a priori knowlrdge arising out of the physi- 
cal constraints of lnser scanning, a Cart matching algorithm 
is designed. 



HYPERGRAPH REPRESENTATION 

Hypergraphs ate generalizations of graphs. The edge 
is generaliz~d as a hpper~dge, where a set of vertices forms 
the hypered*, instpad of just two vertices forming the 
edge. The group of vertices forming the hyperedge may 
sharp some common property. Hypergraphs have heen 
used earlier in vision and robotics applications [ € I ,  121, 
but have not found widespread usefulness. WQ present 
a new definition of the hypered~e and a novel method for 
constructing t h e  hypergraphs that makes it a powerful tool 
for vision applications. 

Attributed hypergraphs are a concise way of repre- 
senting objects auch that both quantitative and qualitative 
information are encoded in the r~presentation. Formally; 

Definition 1 T ~ P  Hypergmph 12) is  deJned as an ordered 
p i r  If = (X. E )  whprr .Y = {z1,x2, - - . r  zn) is  a finite 
set of attributed vprtices an6 E = {el,ez, ..A, em} an- I ~ P  
hypredgen o j  the 6yprgmph. The set E is o family o/ 

subsets of X (i .e. each e, is a s u b ~ e l  of X J  aucb that 

A graph i~ a hypergraph whose hyperedges have cardinal- 
ity of two. To each hyperedge, we associate an attribute 
set that maps the v e r t i c ~ s  (belonging to the hyperedge) to 
an attributpd jyraph. 

Each surface patch in the range i rnag~ forms an at- 
tributed vertex. The attrihate  UPS are the surface prop- 
erty values. For each pair of surfacea that  are c~nnected, 
an a t t r i h r ~ t ~ d  arc is formed. Thc attributes of the arc 
describe the interfacing edge and the relative g~ometri-  
cd information between the two surfaces. Groups of the 
attributed vertices (surface patches) form an hyperedge, 
and with each hyperedge we associate an attributed graph 
that describes the topology of t h ~  component attributed 
vertic~r: (fiurface patches). 

The set of vertices that form the hyperedge should 
represent a topoIogically signif rant feature in the graph 
so that the matching task is guided by the topology o f t  he 
scene. C l i q i ~ ~ s  in the graph are significant features that 
arc rich in information. Physically, the cliques represent 
groups of B U F ~ ~ C ~ S  that are adjacent to each other. Since 
a clique provitles a larger attribute set and many gmmet- 
tical properties, Ihc probability of a false positive match 
(between two cliques) is reduced significantly. Each cIique 
forms a hyperedge in the hypergraph and the attributed 
graph describing the clique is the associated attribute of 
the  hyperedge. Figure 1 illustrates the formation of a hy- 
pergraph from a Rceoe. 

Thr cvmpledty of computing the cliques in a graph 
is expon~ntial. so t h ~  formation the hypergraph will be 
exponential. However, the physics of the range imaging 
process restricts the size of the ctiques in the scenes that 
we observe, I t  can be shown that the size of the clique 
i s  restricted to  be four [ R ] .  Once the upper bound on the 
size of the cliques is known, the complexity of computing 
the c1iqw.s becomes O(n).  

THE MATCHING PROCEDURE 

This section presents the matching procedure used to  
derive the surface correspondences in a sequence of range 
images. Thr heart of the procedttre is a direcled free search 

F i g u r ~  1 :  A n  o b ~ r r f  and it$ rorwsponding IIyprgmph wp- 
wsenlnl ion 

algc~rithm that tests various hypolhmes and rejects t h p  
imposaihl~ onps. Finally the intrrpretation that gives the 
l a rg~s t  matrh is selcrt~d as thr solution. Constrained tree 
search algorithms have hem used In many applications 
14, 5. 71. Data pairings are formed by a depth first search 
of an interpwtal ion twe. Earh node o l  the tree repre- 
sents a possih~c pairing. The first data (surface patch) 
i s  taken from t h ~  first scene and pair~d with each of the 
data  in I ~ P  second scene. These form the  node^ in the first 
lewl of the tree. To account for missing surface segments 
due to occli~sions. the data i a  also paired with a tarM rnd 
r. Subsequent levels of the tree correspond to pairings ai 
other vertices. Karh branch of the tree represents a partid 
matching of the scenes. The constraints are used to prrine 
the search t rep and thus reduce the search spare. 

tfrc present a variation to the constrained tree search, 
in which t h ~  search is directed based on the current hy- 
pothesis. Thr di r~ctcd search. raiipl~d with the tcrmina- 
[ion conditions, f u r t h ~ r  reduces the search space. The key 
idea is t o  use the tapologicaI constraints of the scene to 
determine the nrxt most likely match, and to accept or 
reject the matches based on the gmmctrical constraints. 

The featurcs u s ~ d  in the matching process are sur- 
fare segments. We assume that a segmentation algorithm 
[9, IO] segments the range image into surface pa tch~s  and 
1 he s n r f a c ~  parameters are computed. The interfacina 
edge betwen the surface patclips arc detected and their 
properties are computed. The properties of t h ~  edge seg- 
ments used arc (1  ) thc edge type (~ t r a igh t  line or curved), 
(2 )  the edge length, and ( 3 )  the d ~ p t h  discontinuity. The 
depth discontinuity across the edge implies that one sur- 
fate may he occluding (partially or completely) another 
surface. T ~ P  inforrnal~on about occlusion is also incarpo- 
rated in the attribute list o l  t h ~  G U T ~ ~ C P  patches. 

T h p  constraints used are similar t o  the unary and bi- 
n a y  constraints developed b! Grimson and LozanwPerez 
(61. The only unary constraint we use is the surface type 
classification (planar, cylindrical, conical, etc.). Other 
properties, used in  model based object tecoe;nition, surh 
as area, perimeter. compactness, etc., are very sensitive 
to occlusion, and sinre occll~sfon may occur in either of 
the rang? images, t h ~ s e  pmpcrties: cannot be used con- 
straints. The binary constraints describe the relative prop- 
erties between pairs of surface s~grn~nts .  The properties 
we use arp ( I )  cannertivity, ((2 thr angle between the sur- 
face patches, (3)  the range o i  distances between ( t ie  two 
surface patches, (4 )  the range of the components of the 
vpctor spanning I he two surface patches, and ( 5 )  the prop- 
erties of the interracing ~ d g e .  Earh constraint is measured 
a n d  tested against a predetermined threshold. For surface 



segnlrrlts t ha1 h a w  arl occluding ~ d g r ,  the n~ighbors in- 
formalinn is not complrte (a neighbor may bp hidden) and 
Z ~ P  r o ~ i n ~ c t i v i i y  iriCnrnialion may he inaccurate. There- 
f o r ~ ,  lor such casrs only a rrrrnk match is hvpothesized 
which is srltljert t a  runformatian or rejection h a s ~ d  o n  
111rt her pvidprirt-. 

Mat rhing b c l w ~ r n  t hr two hypergraphs representing 
the smnrs ir achieved hy compi~ting the match betwwn 
thp romponpnt hypcrrdg~s.  :I match bctween the two hy- 
prredcc:cs is hypot h~sizetl .  Thc Two hyltprpdgps arp matched 
by rna t rh in~  thr  a t t r i h u t ~ r l  ~raptrs r ~ p r ~ s ~ n t i n g  the hy- 
P P ~ P ~ I E P E .  :\n o r d ~ r  nt vprlicph is ~stnblished at each  stag^ 
of r h r  matrh. 7 ' h ~  order dc t~rmincs  the branches taken 
in l h r  srarch t rw.  Tllr order is d ~ t ~ r r n i n ~ d  by listing 
I br hyp~rrdp;rs conn~r t cd  to the rcrticcs that haw been 
m a t c h 4  in r r ~ r r ~ n t  hypothesis. Thr matching procedurr 
starte by s~ l r c t ing  thr l a r f f~s t  I i y p ~ r ~ d < e  /I1 and H i  i n  tlw 
1 wo scrnrs. Thp v r r t ~ x  n ~ t h  T I P  larepst degree i s  selected 
ns the first node n i  aird i t  i s  matched with the corre- 
spanr t in~ vprtpx in 1 hc- second hype red^^. The unary and 
rhr hinary constraints are rh~rked  t o  evaluate the match 
hrrwwn the J ~ y p r r ~ d ~ ~ s .  Onrc thc  hgpercdge-match has 
hwn rst ahlish~d , t h~ s~cond  s ~ t  of hyp~rpdges are s r l~cted .  
The nrxt hypcrrdgr IT2 is t h~ hyp~redge connect~d to H I  
at R I .  .El match for rach oft hr tiyp~rrdgce connrcted to 111 
at nl is ini~nd. The sparrh t h ~ n  procepds to find matches 
of hyprrrdgrs tonnrctrd t o  t i l  a t  other vertices belonging 
to 111. T h p  p r o c ~ d t ~ r ~  gnw down thr  list of all the v ~ r t i c e ~  
in the hyprrgraphs in t I IP  orrirr evaluat~d earlier. Oncc a 
match int a hype red~r  is found that hpprredge is marked 
M mrrlrhcd. TIlr markrrl hyprr~rigcs art- not ronsidered in 
I IIP rn~t t r r~  hypo? I I P ~ P S .  

F i ~ u r r  2: T ~ P  d ~ p t h  mop3 oj n sppucncp of mnge images. 

Tprmination of the matcl~ing pruceduse occurs if the 
fraction of surface patches matched ~ x c e e d r  a threshold. 
Once a match has h ~ ~ n  d ~ t e r r n i n ~ d  (i.e., the search pro- 
cwlt~rr has reached thv leaf node of the tree), the num- 
ber nf p05itive pairinxs (i.e.. non-wild card pairings) is, 
romputed.  IF this n t ~ n ~ b ~ r  is l ~ s s  than the threshold frac- 
tion t h ~ n  the procerlurp backtracks and searches other 
branches. At evpry stage thr heat possible match is corn- 
patrd wit 11 the current best match.  I f  the hest possible 
matrh is s n ~ a l l ~ r  than t h ~  c l ~ r ~ e n t  match, then the search 
dong  that branch is abandoned and the next branch is 
invrqtigatcd. 

RESULTS 

In t hi9 s~ct ion  W P  prwcnt a n  cxarnplp of a range iim- 

agp sequence and describe hnw t h~ matching algorithm 
rompu t ~ s  the surface rorr~sporldences. The algorit hrn was 
trird sucrcssfrrlly on difr~rpnt lypes of range image se- 

q1lrnrt.s. 

Figure 3: T ~ P  ~ q r n ~ n l e d  mnge imag~s. 

Fignr~s 2-4 illustrate the algorithm on an example. 
Figure 2 shows thc dcpth maps of two frames in the se- 
qupncr of range images. The Bcenes consist of a jum hle of 
d ~ f f ~ r ~ n t  kinds of o h j ~ r t s .  The carnpta i s  moved to obtain 
the second f r a m ~  01 the sequence. The segrnmtation d- 
gorithrn of [ I  01 w;rs applied on t hr images and the tesulbs 
input t o  the matching algorithm. The segmented results 
are shown in f i g u r ~  3. The Rrst step of the algorithm 
Kenprates the attributed graph of the scene and computes 
the c l i qu~s  in t h~ graph. Each rIique forms a hyperedgc 
in tlip generated hpp~rgraph.  The hypergraphs g ~ n ~ r a t ~ d  
arp shown in thp f i g u r ~  4 .  For each t ~ y p e r e d ~ e  thp compo- 
nent ve t t ic~s  rnrm an a t t s~buted  graph. In the figure- the 
arcs of the attributed graph a r p  shewn in the hypwedgp~. 
CE~IIR the p r o p ~ r t i ~ ~  nf the  edge. interfacing two surface 
segments, it is rleterrnined if two surfaces are connected. If 
ttwre exists an nrclucling ~ d g e  between two surfaces then 
the arc in the  attributed graph is wtnk  (shown in the  fig- 
ure 4 with dotted l i n~s l ,  h match based on a weak arc is 
a weak match and further evidcnce is required tn  confirm 
the hypothesis. 

Figure I :  The genemred hypevmphs of the mnge tmages. 

The first hyperedge pair hypothesized to match is 
{h.f .  j )  in the first scene matches { 3 , 4 , 1 l j .  The vertex 
with the highest degmr h is considered a/s the first vertex. 
The unary constraints leave only one option i.e., ( h , 3 )  as 
the first node in the interpretation tree. However. thc next 
two vertices i and j do not match any vertex so they are 
matched with the wild card *. Tote that in the final match 
that i s  obtained the pairing ( h ,  3) is an incorrect pairing. 
The aIgorithm hacktracks and finds the  correct match even 
though we htart with an incorrect match, NIP present the 
first tcw stpps to i l l l ~ s t r a t ~  how the algorithm works. The 
wcand hyperedge consirlcr~d fur match is { h .  g )  because it  
is connected to the first hyperedge a1 h .  Since the current 
hypot hmis is ( h , 3 ) ,  the nex1 hyperedge match considered 
is between { h , g )  and (3 .2) .  The unary constraints are 
satisfied h ~ t w c e n  the pair (g, 2) so the binary constraints 
of angle, distance and rlie spanning vector are rested. All 
the constraints are satisfird so the match pair is accepted 



in the current hgpothwis. The next hyp~redge considered 
now is ( j .  k )  a it is connected to the first hyperedge. The 
match betwen {j, kj and (11,121 is tried and t h e  pairing 
(k, 11) satisfies all the constraints, but the  connectivity is 
not satisfied {k is ant connected to  h while 11 is connected 
to  3). A t  this point we use the fact that the arc between 
3 and I ?  if: a weak one so it can be broken and all the 
constraints are satisfied. 

The proc~dure  continues till a complete match (!.en, 
all the  vcrtic~s are accounted for) is obtained. The match 
size is evalilated and if a better match can be obtained, 
the procedure backtracks t o  improve the results. The final 
matchine r ~ ~ t ~ l t s  are: 

I! I l l  1 I I I 1  I I I1 

I t  mav hp observed that in lhp ~xarnple shown there 
are many errors in segmentation (for eg, surfaces j, 7, 
14.  13, etc.) and there are surfacer; that get occluded 
in one of the scenes (for eg. 4 and 1); notwithstanding, 
I he algorit hrn  performs well and the correspond~nces are 
eval uared. 

CONCLUSION 

Computing motion and tracking a n  object ovet a se 
quenre of ranRc images involves establishing correspon- 
dence hrtwecri the features of the ohjpct in different im- 
ages in the sequence. The question of finding correspon- 
d ~ n c e  in a sequence of range irnagp.9 is very different from 
finding correspondence between a model and an object de- 
scription. The fi~ndamental difference ljps in the fact that 
the model description of the object is complete. whiIe in 
case af a sequence af range images, both descriptions of 
the scene are incomplete. The lack of information forces 
onp to  impose only weak constraints and alloa Tor larger 
tolerances. 

Wr presented a new framework and procedure to com- 
pute the tarrespondenccs hctween ~urface  sepenta  in a 
sequence of ranRe images. Fundamental t o  our frame- 
work ifi the hypergraph representation of thc ranRe im- 
ages. The hi~rarchical representation of hypergraphs not 
only reduces the search s p a c ~  .significantly, but alae facil- 
itates rlie encoding of the topological and geometrical in- 
formation. In  addition to  the tapological and geometrical 
information obtained from the scene WP also use a priori 
knowled~e or  the scene obtained from t h ~  physics of the 
laser scanning process used to produce the range images. 
Each piece of information 11s~d r ~ d u c e s  t h ~  complexity of 

thp matching procedure by pruning the search space. The 
solution is robust and accounts lor errors in segrn~ntation, 
occlusions of surfaces, and noise in the data. Ry using 
the topological information to guide the search procedure, 
the average r u e  c o m p l e ~ t y  of the algorithm is reduced 
significantly. 

References 

[I] F. Arman and J.K. Aggarwal. Model-based object 
recognition in dense r a n g  images - a review. To 
Appear i n  A(7M Computrng SUPUP~R, 1992. 

121 C. B~rge .  Gmphs and Rypeqmph. North-Holland 
Publishing Company. Amsterdam, I9R3. 

[3] 1V.E.L. Grirnaon. The combinatottcs of object recog- 
nition in CIU ttprpd pnvironmenl6 using constrained 
search, Arlijirial Intelligence, 41:f 21-165, I990. 

[4] lif,E,L. Grirnson. The combinat~rics 01 heuristic 
search tcrmination for object r~cognition in cluttered 
environments. IEEE Tmnsoctionr on Pattern r ind-  
p is  nnd M n c h i n ~  Intelliqrnm, 13(9):920-935, Scpt. 
1991. 

[S] W.E.L. Grirnson and D.P. Huttenlocher. On the 
verification of hypothesized matches in model-based 
recognition. IEEE Tmnsaciions on Patdern Analy- 
ais ond Machine Intelligence, 13(12):1201-1213, Dec. 
1991. 

161 W.E.L. Grimfion and T. Lozano-Perez, Localiz- 
ing ov~rIapping parts by searching the interpretation 
Itrpr. IEEE Tmnsacttonn on Pottern Analyai.q and 
Machine Intelligence, 9(4 ):469-1R2, 1984. 

[7] V. Kurnar. Algorithms for conslraint satidaction 
problems: A survey. A t  Magazine, p a g e  32 - 44, 
Spring 1992. 

[R] B. Sabata a n d  J.K. AmarwaI. Carreapondwte of 
surfaces in a sequence of range irna~efi using hyper- 
graphs, Submitted for Publication. 

[g] R. Sabata, F. Arman, and J. K, Aggarwal. Segmen- 
tation 01 3-d rang images using pyramid data  atruc- 
tures. Accepted for publication in Computer Vision, 
Graphics, and ~rnage Processing: Image Understand- 
ing. 

[la] B. Sabata, F. Arrnan, and J. K. A ~ a r w a l .  S e p e n -  
tation or range images using pyramidal data struc- 
tures. In P m c d i n g s  o j  Ini~mationaS Conjewn~e in 
Campuler Vi.sron. pages 662-666, Osaka, Japan, DF 
c ~ m b ~ r  1990. 

[I l] A.K.C W n g .  Knowledge representation for robot 
vision and path planning using attributed graphs and 
hypergraphs. In A.K.C. l o n g  and A.  Pugh, editors, 
Mochlne tntel l ig~nce and knoutledge engineering l o r  
mbtzc appl imlrons ,  pages 113-143, Springer VerIag, 
Berlin Hcidelberg, 19RT. 

Ii21 A.K.C.  won^, S.W. Lu, and M. Rioux. ReEogni. 
tion and shape synthesis a i  3 4  abjecta based on at-  
t r i bu t~d  hypergraphs. IEEE Tranttaciions on Paltern 
AnlrSy~7.q and Marhine I n l c l l ~ g ~ n c c ,  1 1(3):279 - 290, 
March 1989. 

We would like to thank Debi Paxton for proof reading 
the paper. This rcsearch was supported in part by A m y  
Research Office, Cantract DAAL-03-91-G-0050 and Air 
Force Ofice of Sponsor~d Research, Contract F496PO-92- 
C- 002 7. 




