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Abstract 

In this study, we explore the domain of orthogonal 
transforms, in order to bring an understanding on the 
characterization of image features, with emphasis placed on the 
Karhunen-Loeve (K-L) transform for its optimal energy packing 
properties. The study's wnmbution is in establishing a thorough 
research base that relates the eigensystem and transform domain 
properties of the K-L transform to two-dimensional image features. 
Other transformations such as Haar, Hadamard, Walsh, Fourier, 
and the discrete cosine transform ( D O  are presented as a basis for 
performance evaluation in the energy packing sense. The main 
thrust of this study, given the transform domain, is to determine 
mechanisms and develop algorithms relevant to the understanding 
and discrimination of visual features invariant across translation, 
orientation, gray-level polarity reversal, and size. The 
computational requirements are addressed. 

Introduction 

The Karhunen-Loeve (K-L) transform is recognized as the 
optimum transformation in the sense that it packs the most energy 
into its first few transform coefficients as it minimizes the mean 
square error hetween the original image and its corresponding 
reconstructed image from a smaller set of uncorrelated transformed 
data. This is an important feature for data compression. Also, K-L 
transform yields features most desirable for the development of 
algorithms that are invariant across orientation and translation. 
However, it has always been dismissed for its wmputational 
complexity due to the fact that the eigensystem need to he evaluated 
requiring the computation of large inverse transformations. This is 
compounded by the fact that no fast algorithm can be implemented 
for such a transformation. For this reason, an implementation of 
the Household method to mdiagonalize the covariance matrix in 
order to expedite the finding of the eigensystem is proposed. As it 
will be made clear, the drawback of wmputational complexity 
should be reassessed for all the advantages provided by the K-L 
transform. 

The focus is placed on the understanding of the relational 
principles that exist between image features and their subsequent 
change due to rotation, translation and other variations with respect 
to the noted effect resulting in the transform domain. Some of the 
visual features understanding algorithms developed in this study 
draw from the work by Hubel and Wiesel on "the visual cortex and 
the seeing of features" [1,2]. An analysis is provided relating the 
results obtained on the transform domain to image features in 
context with the effect of edge lines with different orientations, 
positions, and other morphological properties. The preliminary 

results obtained for this particular problem constitute but a simple 
first step of what may he a fundamental problem in vision, that of 
bringing some credence to the belief that transformations may be 
involved in the important issues of size constancy and orientation- 
independence. 

A unified mathematical framework is provided to relate in 
a simple way all of the orthogonal transforms. It is then easier to 
perform comparative studies, and characterize uniquely each one of 
the transform in their energy packing sense, as well as in their 
responses to image features and properties. Certain mathematical 
fundamentals such as the eigensystem, the covariance matrix, the 
correlation matrix, and other statistical parameters are exploited for 
optimized visual features interpretation and understanding. 
Throughout this study, all computer implementations are assessed 
by means of their performance in relation to the wmputational 
requirement, and in their effectiveness to visual features 
understanding. 

Orthogonal Transforms Mathematical Framework 

The orthogonality principle of transforms and the 
separability of the transform kernels are best understood 
considering the following mathematical framework: 

A matrix Mas  described below: 

is said to he unitary if (MT)* = M-I, where (M')' is the 

conjugate transpose of M. If M is a real matrix, then M is an 

orthogonal matrix such that MT = M-I. These type of orthogonal 
mavices satisfy the following conditions: 

The transformations used in image processing are in 
general orthogonal transformations which yield transform elements 
that are highly decorrelated. The orthogonality property is what 
allows us to avoid the burden of computing the inverse 
transformation. 

As an illustration, recall that the discrete Fourier transform 
(Dm, can be written as: 



whereu,v=O,l....,N-1 
thus, F(u,v) can be written m matrix form as: 

F(u,v) = kf (x.u). f (x,y)kf (y,v)" 
'T 

where k (y, v) denotes the transpose conjugate of the forward 

kernel, k, ( y, v) . Such is the case of complex transformations like 

the Fourier transform. For real orthogonal transforms, the general 
formulation for the transformation operation can he written as: 

T(u,v) = k,(x.u).f(x,y).k,(y,~)~ 
Using the same principles, the inverse transformation 

operation can he written as: 

f(x,y) = k,(x,u).~(u,v).k~(y,v)~ 

where ki = k;' = k/T;j(x, y) can be written as 

note that kf (y,v) and kf (x,u) are functionally equal. 

2-D Image and Relevant Statistical Descriptors 

If we consider a twodimensional (2-D) image X, then the 
covariance matrix of X is defined as: 

1 4 1  4 2  -.. .:.I 
where the variance elements are given by: 

1 
01 I' = -.[(rowi) n .(row,)'] - (M,~)(M,.~)~ 

and the mean values are given by: 

xii k i n g  the elements of X. The correlation matrix is defined as: 

where, 

117 - i = j  
An elaborate study of these statistical descriptors is given in [3-51. 

It is noted that the covariance matrix is real and 
symmetric. It is the symmewy property that is exploited in using 
the Householder method, as will be shown later, in order to expedite 
the finding of the eigensystem. 

Application of the Karhunen-Loeve Transform (KLT) 

Like other transforms, the K-L is an orthogonal transform 
hut statistical in nature. That is, it performs a statistical analysis on 
the variation in the image data. Considering an n x n input image 
X, the KL transform can he derived as: 

y =A.(x-m,)  

where A is the matrix composed of eigenvectors of the covariance 
matrix of X, and m, denotes the mean vector of X found by 
averaging the values of each row. It can he shown that the 
covariance mawix of y can be computed as: 

C is a matrix whose elements are zero except along the main 
Y 

dlagonal where the values are the eigenvalues of Cx. Since C,, and 
Cx have the same eigenvalues, Cy and Cx will have the same 
eigenvectors. Using the orthogonal property of the eigenvectors, A- 

= A=, it is possible to reconstruct input image from the transform 
as follows: 

This inverse transformation is a one-to-one mapping flossless 
transformation) if we preserve all the eigenvectors. However, for 
data compression purposes, if we take into account only the energy 
from the first k eigenvectors that correspond to the first k highest 
eigenvalues, then the KLT can be expressed as follows: 

Y k  = A , . ( ~ - m x )  
where Ak is composed of the fmt k eigenvectors and both Ak and yk 
are of a k x n dimension. The lossy reconstruction is thus: 

where A:and & are of n x n dimension. 

Application of the Householder Method 

The Householder method reduces an n x n real and 
symmetric matrix to a tridiagonal matrix using (n-2) Hermitian 
(x7* = X) transformations [6]. Since input images are not 
necessarily symmetric, a real and symmetric covariance matrix of 
the input image is first determined before the Householder method 
is used. The iterative process of the Householder method 
annihilates the required part of a whole column and whole 
corresponding row for each iteration. Consider an n x n real and 
symmetric matrix X such that: 

Xr+l =T(".X;T(", where r=1,2,...,n-2 
The fir)  matrix is the Householder matrix defined as: 



T(') = I - 2 .  w(') . where 

a =  
1 

, where S' = x:+, + (yT . y) 

the variables 01, ... , Or denote the inserted zeroes at the rth 
iteration. The vector y consists of the element from (r+l) to n of 
row r, and 

V$) = x,,, + sign(x). S 
xr is the rth row of matrix X. The whole process of tridiagonalizing 
an n x n matrix through Householder method requires Hn operations 
171, where Hn is given as follows: 

Once tridiagonalization is achieved. the eigensystem can 
be computed more efficiently through the use of QL algorithm with 
implicit shift given in 181. 

Computational Aspects 

Below is a timing comparison of the computational 
requirements of an n x n matrix between standard evaluation of the 
determinant and using the Householder method. 

The determinant of a 2 x 2 matrix is: 

This requires 2 (mults) and 1 (addsub) operations that is, 

0, =E, = 2 . ( M ) + l . ( A )  

Similarly, for a 3 x 3 matrix, we find: 

all . cof [all I - a12 . coda; ,  I + a;, .cof [a13 I 
where cof[aij] is the co-factor of ai.  element. This co-factor 
requires O2 operations. Thus, the numkr  of operations required to 
compute the determinant of a 3 x 3 matrix is: 

For a 4 x 4 matrix, then: 

0, = 4.[3.(~,)+3.(~)+2.(~)]+4.(~)+3.(~) 
operations are required. The number of operations required to 
compute determinant of a 5 x 5 matrix is: 

O5 =5.[4.[3.(&,)+3-(M)+~.(A)] 

+4.(~)+3.(~)]+5.(~)+4.(~) 
As we can see that if the order of the matrix increases, so does the 
number of operations. For an n x n matrix, the number of 
operations required is in the order of n!. 

b. Bouseholder Method 

After tridiagonalization, the evaluation of the determinant 
of a 3 x 3 Householder matrix is as follows: 

a;, .cof [all I - ,, . cod42 I 
This requires: 

0, =~.(O,)+~.(M)+~.(A)=~.(E~)+E, =3.&, 
Similarly, for a 4 x 4 matrix, it is determined that: 

0, =2.[3.(&,)]+&, = 5 . & ,  
Thus, by induction, for an n x n matrix, the number of operations 
required to compute the determinant of a tridiagonalized matrix is: 

o,, = ( Z n  -I).&, 
Below is a table on the timing analysis in computing the 

determinant of an n x n matrix: Hn denotes the amount of 
computations required for the tridiagonalization process. 

Image Features and the Transform Domain 

Size 

3 

4 

8 

16 

Energy Conservation 

In this section, a comparison of several orthogonal 
transforms is given in function of the energy distribution. The 
transforms given are: Discrete Cosine Transform (KT), Discrete 
Fourier Transform (DFT), Haar Transform (HaT), Hadamard 
Transform (HT), Walsh Transform (WT), and Karhunen-Loeve 
Transform (KLT). Figure 1 illustrates the ways this energy is 
packed by the different orthogonal transforms. Figures ](a) and 
I(b) illustrate the case where variances of rows and columns of the 

H, 
22 

58 

422 

3038 

given image are all the same (0' = c ,  where i=l,.., k, and j=l,.., k), 

and the case where an abrupt change exists between any two pixels, 
respectively. The transformations used in Figure 1 take the form: 

[~(u,v)] = o2 . [ k ,  . Rx . k ; ]  

noting that the covariance matrix & = o2 . RX, where kf is the 
forward transform kernel. 

det(H,,) 

9 

21 

381 

196605 

Observation: The energy of a scene containing two objects is 
equivalent to the sum of the energies of the two objects. 

Eigenvalues Energy 

H, + det(H,) 

31 

79 

803 

199643 

Standard de t  

6 

24 

40320 

2. I * 

O ~ I W I  
Ohlet2 

Ohlerl l r l  

whae Et dcnaes the total energy of the trandm ohcaincd from the eigenvalues. 

38x8 
M3l8 
54%% 

4x5 
I lWl 

20579 

o 
3326 
11M1 

o 
0 

4128 

1 2 3 4 6 6 1 1 E t  

o 
0 

2Q8 

o 
0 
0 

o 
0 
0 

o 
0 
0 

4m3 
m I  
'IN74 



Observation 1: Regardless of the orientation of an object, if the 
contour of the object is not affected by the orientation, the K-L 
transform yields the same eigensystem and the same energy. 

Observation 2: Any amount of object information hidden due to 
the effect of orientation is reflected proportionally in K-L transform 
domain. 

Below is a table reflecting a constant eigensystem and 
energy conservation for an object that is rotated at different angles. 

Observation: It is noted that a change in size of an object is 
reflected proportionally in the energy of the K-L transform domain. 

S n n e l  
Snm-l.roUCd14. 
Scene-l.m.UdlMe 
5a.n.-l.mlsl~d-Wo 

whae El d e n a e s  thc lMal energy of the mrsfcinu obtained from the eigeovalues. 

Observation 1: Translation of an object on a homogeneous 
background has no effect on the K-L transform domain. The 
eigensystem and the energy remain constant. 

where I i  denrxes the total energy of the mnsfm obmned  from the e~genvalues.  

13x3 
1323 
1323 
13Y3 

Observation 2: An image containing an object in translation on a 
homogeneous background with respect to a stationary object, would 
yield a transform domain where the eigensystem may be different 
but with the s'une amount of energy, unless there is an overlap 
between the objects. The difference in the eigensystem is function 
of the way the covariance matrix is computed (row wise vs. column 
wise), and the placement of these objects in the scene. 

Eigenvalues 

O b l ~ l l  13816814DS[  0 I 0 I 0 I 0 1 0  I 0 
Ohle<LI.TIlR3NII 4101 1 0 I 0 I 0 I 0 I 0 I 0 

where F,, drnotcs the total encrgy of the mnsfm obtained from the e~gcnvalues.  

34411 
34417 
34417 
M I 7  

in Grav-Level P m  

Observation: A change from a positive image to a negative image 
of the same scene yields no change in the eigensystem as well as in 
the energy. 

153  
I 5 3  
1633 
1013 

Conclusion 

The results presented in this study were obtained using 
various synthetic and real images. The Householder method 
improved significantly the processing time of the K-L transform 
from the order of n! computations to the order of (2" - 1) 
computations in finding the eigensystem of large matrices. Various 

lmBl 
l a R l  
lmRl 
INRI 

aspect of the image features were accessed in terms of the 
eigensystem and other statistical descriptors. Such type of analysis 
leads effectively to the development of algorithms that are invariant 
across translation, rotation, and reversal of gray-level polarity. 
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(b) 
Figure 1. Energy packlng feature of transforms 




