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Abstract 
Image processing applications need shorter processing times. This 
requires the parallelization of low and mid levels sequential pro- 
cess chains on specific machines. In this paper we present the 
implementation of a contour based image segmentation process 
on our parallel vision machine ?i.ansvision. Two approaches for 
the contour coding steps are discussed. 

1 Introduction 
Edge extraction is an important step in a system of image pro- 
cessing. High and mid-level processings require short processing 
times and accurate results from the edge extraction process (good 
localisation, one reponse to one edge...). The different approaches 
based on optimisation of criteria seem to fulfil qualitative require- 
ments. This improvement leads to an increase of the complexity 
of calculations. On traditional sequential computers the use of 
egde extractor based on optimisation of criteria is too much time 
consuming for applications requiring short response times. 
This paper deals with the implementation of a contour based im- 
age segmentation process on a heterogeneous machine based on 
two architecture levels, pipe-line and distributed memory  MIMD 
models. 
This segmentation process can be split in five different stages : 

directional gradients processing (R. Deriche), 

local maxima detection (R. Deriche), 

8 hysteresis thresholding (R. Deriche), 

contour coding (we developped this algorithm), 

polygonal approximation of coded countours (Duda and 
Hart). 

2 Sequential algorithms 

2.1 Edge detection and extraction 

The computation of the directional derivative images is achieved 
by using the Deriche filter [I], [3]. The next step consists in a 
local maxima detection. Then the hysteresis thresholding is used. 
During this last step, the pixels detected as local maxima are 
tagged according to the value of their gradient magnitude : 

hysteresis thresholding, the coordinates of each contour pixel were 
stored in a structured list. To organize this list, the abscissa will 
be considered first and organized from the lowest value to the 
highest one. When there is more than one point abscissa of the 
same value, the ordinates will be organized in the same manner. 
We associate an index in order to increase the reading time of this 
list. This index contains the suffixes from which the differents 
points of researched abscissa can be found. In this method, we 
arbitrary give a higher priority level to 4-connected pixels, and 
look only for "the future", according to the structure of the list. 
Consider the figure 1 .  

Figure 1: Neighbourhood. 

The first unlinked point of the list will be called current point. 
We will then test the next point of the list to determine if it is 
4-connected to the current point (point 1 in the figure 1).  If it is 
4-connected, it will become current point. Otherwise, we will scan 
the next set of points of the next row of the image using the index. 
If a Cconnected point (point 3) is found it becomes current point. 
Otherwise, we look for a 8-connected point (point 2 or 4) which if 
found will become current point. If not, the process on this specific 
chain will stop. This operation is reiterated on the points that has 
not been previously identified as part of a chain. At this stage we 
may eliminate isolated points, or small chains of points. A logical 
OR between the set of connected points obtained indicates if the 
chain of points must be stored or deleted (hysteresis thresholding 
principle). At the end of this process, we obtain different lists of 
connected points 

2.3 Polygonal approximation 

This algorithm was first introduced by Duda and Hart [6]. It con- 
sists in a recursive segmentation of a curve, and an approximation 
of the curve by straight lines. 

3 Parallelization 

3.1 The Transvision machine 

A required major feature for the "On-board Mobile Vision s y s  
terns" is to solve very hard temporal constraints : 

8 tag=FALSE if tr < 11 G 11 < t h  one or several on-line sensors deliver data at  real-time video 
rate, 

with tr : low threshold and th : high threshold 
a real-time control process (which includes a full chain of 

2.2 Contour coding image processing : digitalization, low, intermediate and high 
level image treatments), 

This process is necessary to link points belonging to the same 
part of each contour. The connected contour pixels are linked, • control process. 
and only their coordinates are stored. By this process, we ouput 
a set of lists, During the step of local maxima detection and These systems which allow us to solve this temporal constraints, 



require the design of parallel architectures of dedicated machines. 
In this paper, we use a parallel vision machine concept based 
on two combined architecture models (pipe-line and Distributed 
Memory MIMD) and a "data-bridge" between them, called Video 
Node [4]. The name of this project is TRANSVISION. 
The pipeline level is upstream from the MIMD structure and can 
be reduced to a video digitalization module. From this concept, 
we create a "test machine" which allows us to define the best 
suited target machine to  a specific application. 
The " test-machine" links three principles together : 

The Pipeline model is composed of real-time video rate mod- 
ules. These heterogeneous modules are designed with DSP's 
or ASIC's chips, which fit well the low-level image process- 
ing. These operations are generaly regular using local data. 

The Distributed Memory MIMD model which computes the 
object-list created before, is composed of processing e l e  
ments (Pe) like the Transputer Txxx chips. The Pe's net- 
work can be reorganized with program. This model is really 
adapted to  the intermediate and high levels of image pro- 
cessing. 

The "data-bridge" achieves the synchronisation and the 
communication between the two models above. It is based 
on : 

- a T800 transputer, 

- a dual ported video RAM, 

- a special hardware to realize the synchronization be- 
tween the two worlds (this synchronization is based on 
a OCCAM rendez-vous). 

In fact, these two modules realize different transformations on 
different kinds of data, in an asynchronous way. 

Figure 2: The Transvision architecture. 

In order to solve accurately the temporal constraints of the em- 
bedded applications from this test machine, the target module is 
defined by establishing the type and the number of pipeline mod- 
ules, the number of elements and the topology of the Pe's network, 
the communication modes and the number of Video Nodes, which 
could resolve the temporal constraints of the application. 
To illustrate this approach, we present a real-time application 
from an image sequence : a contour based image segmentation. 

3.2 Problem position 

This segmentation process is implemented at the stage MIMD 
of the Transvision machine allowing a coarse grain parallelism. 
Because the goal of this work is mainly to evaluate a parallel 
scheme on a MIMD structure, we don't use the pipe-line level of 
the Transvision machine. 
This segmentation process can be divided into various sequential 
or independant tasks as shown in the figure 3. 

CODING * g 
APPROXIMATION 

Figure 3: Tasks graph. 

The sequential process is split in coarse grain tasks which are im- 
plemented according to  a pipe-line method on the MIMD struc- 
ture. The global processing time will be equal to the greatest task 
processing time ; but the results are available with a delay due to 
the number of pipe-line stages. 

The input parameter of task 1 is the original image. Because 
the Video Nodes have access to the original image data flow at  
the video rate, we assign them task 1. The different calculations 
are row dependent ; so we c h o w  an horizontal data sharing be- 
tween the different Video Nodes. They have to be synchronized. 
In order to  balance the communications, we chooae to connect the 
processors in a ring(refer to  figure 8). 

The input parameters of task 2 are the images resulting from 
task 1 (smoothed and derivated). During this process, we have 
to proceed to a column filtering (vertical data dependency). To 
do so, the result images have to be split in vertical bands. Con- 
sider the figure 4. 

- 

Figure 4: Image sharing. 

The first horizontal band of the original image (11, h,.., I&) is 
filtered by NVl, the second band by NV2 and so on. In order 
to perform the vertical filtering of the vertical band (I1,..,In) on 
the second level of the pipe-line, the processors Pll,..,Pln used 
at  this stage, must have in their own memory the smoothed and 
derivated image bands (I1 ,..,I,,). We then require communications 
with the transputers NVl,..,NVn which have in memory the hori- 
zontal bands of results. The topology of the transputers network 
of the second level (Pli) has to be a ring (as shown on the figure 
8), because they have to exchange with each other different parts 
of the horizontal bands of images. Each processor PIi is linked to 
the N Q .  The communications between N K  and Pli will occur in 
two steps : 

1. N K  send the horizontal bands of results to Pli, 

2. the transputers Pli exchange the portionsof bands with each 
other. 



The use of transputers allows us to hide the communications. A 
transputer is able to manage the parallel execution of several p r e  
cesses by time sharing ; this way it is possible to establish a com- 
munication process with another process simultaneously (paral- 
lel). We proceed as follow to compute the directional derivative 
images : 

Processors N Vi : 
PARALLEL 

horizontal filtering of I(t+dt) 
send R(t) 

Processors Pli : 
PARALLEL 

receive R(t) 
vertical filtering of R(t-dt) 
send C,,,(t - 2dt) 

R : smoothed and derivated image bands. 
dl : highest calculation time. 

As the communication time between N K  and Pli is lower than the 
two filtering times, the communications will be hidden (according 
to the principle of pipe-line). The directional derivative images 
G, and G, are available at  a rate equal to the longuest processing 
time , with a delay due to the propagation of data trough the 
network. 

Task 9 is shared into two local tasks (local maxima detection and 
first step of hysteresis thresholding). It takes place at  the next 
level of the pipe-line. The processors PZ1,..,Pzn used at  this stage 
receive the C, and G, images from Pll,..,Pl,. The extraction of 
the local maxima needs to know the 8 neighbourhood points of 
the result image from the second level. This way, a data sharing is 
also possible. But it is necessary to create an overlapping between 
the bands of the directional derivatives G, and C y  of one column 
for each side of the vertical bands. This exchange needs a network 
of processors organized as a ring (refer to figure 8). 
During this process, once a local maxima is detected, the corre- 
sponding point is tagged according to the hysteresis thresholding 
method (refer section 2.1). Storing or deleting points is achieved 
iuring the contour coding step of task 4. At the end of this pr+ 
:ess, we have determined the list of contour points tagged TRUE 
3r FALSE. For each vertical band of the image, we obtain a list 
and its associated index. 
In order to shorten the processing time we can reduce the number 
of tests and the number of operations. To reduce the number of 
tests we only will threshold the local maxima pixels. To reduce 
the number of operations, we will first have to estimate the gra- 
dient magnitude of the pixel, and determine if the pixel can be 
a local maxima by comparing its gradient magnitude to the low 
threshold. 

process of 11  P( i ,  j) 11 
IF I( P( i ,  j )  [I> low threshold 

process of local maxima 
IF P(i j )  local maxima 

IF 11  P(i ,  j) II> high treshold 
store (i j )  in LIST 
tag=TRUE 

ELSE 
store (i j )  in LIST 
tag=FALSE 

END IF 
ELSE 

don't care 
END IF 

ELSE 
don't care 

END IF 

Note : 
The amount of operations is greatly reduced, but the processing 
time is strongly dependant of data. 
We will hide the communications the same way we did during the 
directional derivatives task. At the end of this task, the transput- 
ers output the structured list and the associated index. 

Task 4 (second step of hysteresis thresholding, coding contour 
and polygonal approximation) is executed at  the last level of the 
pipe-line, using the transputers P31,..,P3n Each processor P3i op- 
erates from the list of points sent by its father Pzi. The second 
step of the hysteresis thresholding takes place during the contour 
coding. This way, chains of points can be broken as shown in the 
figure 5 a,  and a l w  of data may appear. 

o p i x e l  tagged TRUE -sequential r e s u l t  
+ p i x e l  tagged FALSE 

Figure 5: Chains broken by data sharing. 

The section of the chain within a band (band 1 on figure 5 a) will 
be deleted if all of its points within this band are tagged FALSE. 
Even though one or more points of this chain are tagged TRUE 
in another band. Moreover the results output by the sequential 
polygonal approximation process can be different from those ob- 
tained with a sequential process, as shown on the figure 5 b. We 
have presented in [7] a simplified approach ; each processor works 
on its associated image band. In order to obtained parallel results 
closed to the sequential results we have to proceed to a merging 
step of the broken chains. This merging process will need the 
production of a new set of lists. Consider a ring composed with 
N processors. The image is divided into N bands. Each processor 
Psi works on the list of contour points of the associated image 
band. Many cases of broken chains may appear as shown on the 
figure 6. 

Figure 6: Various broken chains. 

The chains of type c l  = c l l  U c12 U ... U c l N  or c6 will 
require the maximum number of merging steps. This can be done 
with logzN steps by using a merging strategy based on a bintree 
structure. The merging of the broken chains of the whole image 
will occur in two stages : 

First stage : 
Pi send broken chains to Pi-] (for i E [2, n]), according to the 
following rules, (refer to figure 6) : 

Pzi sends broken chains of type c1,2i and cz to P2i-1, 

Pzi+l sends broken chains of type c4 to Pzi 

To obtain this bintree structure, Pzi-1 stores in its memory the 
chains of type cl,zi-1 et cg for merging with the chains received 
from Pzi. 



Then each processor PI, .., PN-l merges the broken chains ; PN 
has finished its work. 

Second stage : 
This process allows the merging of chains which are dispatched on 
more than two bands. The merging of a chain belonging to the 
N image bands will need log2N - 1 merging steps. This can be 
described by : 

step - 1 
WHILE (* - 1) 1 0 

FOR i E [O, - 11 

P1lep(4i+~) sends broken chains to P,tep(4i+2) 

P,tcp(di+S) sends broken chains to P#lcp(4i+2) 

P,tep(4i+2) merges the broken chains. 

step + step + 1 

If we take N = 16, the graph of merging steps is shown on the 
figure 7. 

Figure 7: Merging steps. 

At the end of this process each processor has in memory its set of 
lists of chains of connected points. The polygonal approximation 
process can start. We can note that the ring of processors P3i is 
not well load balanced because the chains of points are not {early 
distributed between the processors, for the contour coding and 
the polygonal approximation steps. 
In order to have a well load balanced ring of P3i for the polygonal 
approximation process based on a split method, we can use the 
processors farm model [5] to implement a parallel version of this 
algorithm. To do this, we have to manage a recursive generation 
of tasks which is discribed in [lo]. 
On the other hand, the first step of task 4 (second step of hysteresis 
thresholding, contour coding step and merging step) needs another 
parallel approach to obtain a best tasks mapping on the processors 
Psi. But this will induce a largest processing time and will not be 
efficient enough. 

Figure 8: Network of transputers. 

3.3 Network extension 

Part of our problem is to  evaluate the maximum number of trans- 
puters we can assign to  each stage of the network. We reach 

this limit when communication time becomes greater than the 
calculation time, as the communications are hidden. We face a 
second restriction ; the number of transputers can not exceed 
min{Npm, Neoiurnn}. 
The communication rate is the highest between the first and the 
second stages of the torus (between (NV;.) and (Pli)). 

The communication time on a transputer link is equal to : 

T, = cr + Pinumber of byles} (1) 
First, the Video Nodes send two bands of results to the Pli. If 
there are N processors NV;., the size of a band is equal to $ (for 
an image of size n x n). Because the data is coded as ma1 32 bits 
the communication time is equal to : 

Then, the processors Pli interchange parts (of size 6) from the 
two result bands. $ steps are required for this exchange ; that is 
why the communication time is equal to : 

And the global communication time is : 

The sequential processing time of one of the tasks (task I or task 
2) is equal to TI. As we use a simple data sharing parllelization 
method for each of those tasks, the processing time for N proces- 
sors is : 

We are now able to evaluate the number of processors of stage 1 
(stage 2 and stage 3), for a required processing time. 
As we use transputers, the communications between the procen- 
sors may be hidden. That is to say, we must always have a commu- 
nication time lower than the processing time. For a given image 
size and a given processing time, the use of the formula (4) and 
(5) allows us to verify if the communication time is lower than the 
processing time. 
For instance take an image of size 256x256. The results here 
under are expressed in milliseconds (T, : communication time, 
TN :calculation time). 

With an image of size 32x32 : 

So we can note that the communication time never exceeds the 
processing time. The maximum numbers of transputers of stage 
1, stage 2 and stage 3 of the pipe-line is equal to the minimum 
size of the image. 
4 Experimental results 

4.1 Temporal results 
For our tests, we use reference images (french CNRS GRECO- 
GDR134 database). 
The network of transputers is composed by 16 T800 2OMhz 

[ imagesize 1 t l  1 t2  1 t3 1 t4 1 

ti : task i time 



All the temporal values are expressed in milliseconds. t3  and t4 are 
average temporal values ; the processing times of the associated 
tasks are data dependent. 
The results are output with a rate equal to : 

We will now work on the new Transvision machine. We will use 
the new generation of transputers T9000. The processing time 
will be divided in the worst case by a factor 10 [8]. 

4.2 Results 

The results are obtained with : o = 1.5, low threshold = 15.0, 
high threshold = 45.0, minimum length of a chain = 5, 

5 Conclusion 
Many real time processors are able to extract the contours of an 
image (based on DSP or ASIC technology), but a few can realize 
the full segmentation process [9]. 
This approach we selected, gives us usefull results for the whole 
chain of segmentation. 
However, this solution seems more suitable for an ASIC imple- 
mentation, a perspective we will tackle in collaboration with the 
the Laboratoire GERE, Universitd de Bourgogne, France [2]. 

This work is supported by the CNRS PRC AMN project and by 
CNRS GRECO-GDR194. 

polygonal approzimation threshold = 6. 
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