
MV. '92 IAPR Workshop on Machine Vision Applications Dec. 7-9,1992, Tokyo

A Complete Navigation System for a Mobile Robot, Using
Real-time S tereovision and the Delaunay Triangulation

Michel Buffa Olivier D. Faugeras Zhengyou Zhang

INRIA Sophia-Antipolis
BP 109 - 06561 Valbonne Cedex - FRANCE

Abstract
Our robot is equipped with a trinocular vision system
that has been put into hardware and delivers 3D maps
of the environment at a rate between 1 and 5Hz. Those
3D maps contain line segments extracted from the im-
ages and reconstructed in three dimensions. This vision
machine is heavily used in our laboratory, and our navi-
gation system uses the 3D segments it produces to com-
pute the free space around our mobile robot, locate the
obstacles and plan a safe trajectory.

1 Introduction
Two years ago, before the availability of that vision
machine, we published a paper [BFZSO] describing our
work on obstacle avoidance and trajectory planning for
a mobile robot using stereo vision. Since then, we have
developed a complete navigation system that uses the
principles described in that paper, but we have consid-
erably improved our previous results. We have now a
running demonstration of our mobile robot exploring a
room in order to reach an arbitrary goal while locating
and avoiding obstacles. At each step, each time a new
3D map has been obtained, a ground floor 2D map of the
explored space is updated, and a trajectory is planned
either to go to the goal if a safe route exists, or to ex-
plore unknown areas of the room if no such route could
be found.

To this end, we project the 3D segments coming from
the vision machine on the ground, merge them with the
previous ones in order to remove redundant information
and update the ground floor map. We then compute a
tesselation, more precisely a Constrained Delaunay tri-
angulation (CDT) of this map using the endpoints of
the 2D segments and then determine the free space by
erasing the triangles that do not contain any obstacles
(a very simple processing). These parts have been de-
scribed in [BFZSO].

Then, using that triangulation as a graph, we can plan
a safe trajectory, move the robot and iterate the process.

In this short paper we will just recall previous results
and detail the way we use the Constrained Delaunay
triangulation as a support for the trajectory generation.

One main feature of our system is that the knowledge
of its originally unknown environment can be updated
very quickly each time a new set of data is available.
Projecting the 3D segments on the ground, merging

3D Lime segwnts from the stereo,
estimate of the last movement

1

obstacles
Map of the h e space, locations of the

Figure 1: Architecture of our navigation system.

them with the existing 2D map, updating the Delaunay
triangulation, re-computing the free space and planning
a safe trajectory, all this takes about 4 seconds on a
Sparc station and less than 1 sec on a Sparc2. This per-
formance is possible because of the dynamic properties
of each part of our navigation system. We use a very
recent algorithm for computing the Delaunay triangu-
lation and we propose an original utilization of a well
known algorithm for constraining the set of segments so
that they become edges of the triangulation.

2 Computing the free space and
locating the obstacles

2.1 What method we shall use ?

We have a 2D map made of line segments. The inter-
pretation of this map is not an easy task, it is hard to
recognize the free space and the shape of the obstacles
in front of the robot. An intermediate representation is
necessary.

Like [FLMBSO], we propose to use a Constrained De-
launay Triangulation. The reason of our choice are de-
tailed in [BFZ92], and can be summarized like this:
r It gives a regular tesselation of the space. It has

been proved that the Delaunay Triangulation and the
Constrained Delaunay Triangulation are the best tri-
angulations for surface approximation [Llo77, SHa78,
Kli801.

r From this tesselation we can obtain a polygonal ap-
proximation of the obstacles [LM89, FLMBSO].

r The Delaunay triangulation is the dual of the Voronoi
diagram. The latter has been heavily used in robotics
as a support for trajectory planning, and we will show
in this paper that the triangles can be used too.

r It can be computed dynamically in a very efficient
way.
The reader is invited to look at [Aurgl] for a survey

of the Delaunay Triangulations and Voronoi diagrams,
[Flo88] for a survey of Constrained Delaunay Triangu-
lations.

2.2 Computing dynamically a Con-
strained Delaunay Triangulation (
a CDT) of the set of segments

The 2D map we maintain represents what the robot has
seen so far. Each time a new set of segment is available,
we don't want to compute the CDT of all the segments.
To update quickly the CDT we need a dynamic treat-
ment: some segments must be added and some must be
removed. Unfortunately, the first dynamic algorithms
that can maintain a CDT directly have been published
in August 1992 [WT92, TCK921, too late! We started
our work two years ago!

Instead of designing a new dynamic algorithm from
scratch, we choosed a two step method: we dynamised
the static algorithm of [FLMBSO] that adds points on
the segments so that the standard Delaunay triangula-
tion computed on the set of points (extremities of the
original segments and added points) includes all the seg-
ments as edges of the triangulation. This dynamisation
was rather easy because it appeared that when a seg-
ment is added or removed, only a local treatment is nec-
essary, due to the following properties:
r s = (P, Q) will be a Delaunay edge if the circle of

diameter P Q does not intersect any other segment.
r The two segments si = (Pi, Qi) and s j = (Pi, Qj)

which have a point in common will be delaunay edges
if the circle passing through P;, Q;, Qj does not inter-
sect any other segment.
We used this dynamized algorithm in conjunction

with the algorithm of [ODT90] which computes dynam-
ically the standard Delaunay triangulation of a set of
points.

2.3 Computing the free space, locat-
ing the obstacles

We described in [BFZ9O] a way to compute the free space
and locate the triangles from the CDT of the set of seg-
ments, using a very simple visibility criterion.

3 The trajectory generation
module

3.1 Introduction
The behavior of the robot in our demonstration is close
to the human one: it look around him before moving in
a hostile environment, then move, then look again and
so on...

T h e algorithm is performed as follows:
1. Take a panoramic view of what is in front of the robot

by rotating only the triplet of cameras, update the 2D
map, compute the free space.

2. Look if there are possible passages to approach the
goal. If such passages exist, compute the paths to go
to them. If there are more than one possible passage,
choose the best one among them.

3. If there is a passage, perform the corresponding move-
ments computed in step 2. and go to step 1.

4. If no possible passage has been found, perform a
safe movement in the free space so that the next
panoramic view will reveal things that have not been
seen before. Go to step 1.
Explanation of s t ep 2:
An edge of the triangulation is a possible passage if:
It is on the boundary of the free space.
It is an edge of two triangles (one from the free space
and one internal to the convex hull).

r It is not a physical segment.
r It is long enough. (The robot must be able to cross

it).
This definition means that a possible passage is an

edge of the convex hull that has been built by the process
that removes the empty triangles, but does not represent
something that has really been seen (see figure 2). In
that case, the robot is attracted by such an Uunknownn
part of the map he built so far. He wants to see what's
lying there and if there is a passage that can lead him
to the goal.

3.2 How we compute a path
The possible passages are determined during the com-
putation of the boundary of the free space. See [BFZSO]
for more details.

To compute the different paths to the passages, we
first associate to each passage the corresponding empty
triangle.

Then, we can consider the set of triangles that be-
long to the free space as a graph whose vertices are the
centers of gravity of each triangle and edges are links be-
tween each pair of adjacent triangles (see figure 3). The
length of each edge represent the distance between the
barycenters of two adjacent triangles. We can then ap-
ply a common shortest-path algorithm to determine the
shortest path from any triangle to the triangle right in
front of the robot. This is a standard Dijkstra algorithm
that examines recursively all the triangles starting from
one particular triangle (in our case the one in front of
the robot) and updates precedence relationships. At the
end, it is possible to know the shortest way to go from
any triangle to the initial triangle just by using these

m - m m m Poeslbbpassaga

- Paths that go to dl the
po=bb pa-ges

Part of the tcundary of - the he6 gpam made of
real obstacles - Pmj&edaegrnenb

- - - Delaunay triandea whose
center3 have been used to
wmpute the patha

Part of the boundary of the - - - b e spa- that IS netha
a passage nor an obhtacle

69 :2Y'We*trnu*
Some example of paths computed from the Figure 4:
graph formed by the empty triangles

The way to mme pomlMe passages
may be obstructed by a narrow gap.

Some possible passages may have no way to
Figure 5:

go to them.

smoothing such paths:

We start recursively from PO. We will first try to
simplify the path by going directly from PO to P2. Is it
possible? Yes, the robot won't hit any obstacle. We then

precedence relationships. try (PO - P3). It works too. Let us try (PO - P4)! This
If during the examination of the triangles we don't time the simplification is impossible: the straignt line

take into account the triangles that are too close from (PO - p4) is too close to 0bsl. We then try (PO - p5),
the obstacles, then we greatly improve the execution (PO - PC)... so on until (PO - P8). Starting from
time of the shortest path computation. Of course, dis- Po, the only simplification we found was to go directly
carding empty triangles can make SOme Passages im~os- from PO to P4. We introduce that modification, and
sible to reach. For example if there is a narrow gap start again with the way point just after PO now: p3.
just on the way to a large Passage, safe way can be Doing the same processing, we see that it is possible to
computed to go to that passage. See figure 5. go directely from P 3 to P7, but not to P 8 as the segment

So what we do to determine the set of possible paths p 3 - p 8 is too close to Obs5. So, we then try to find a
for the robot is: we examine each possible Passage, we shortcut that starts from P 7 and so on... The treatment
look at the corresponding empty triangle, and if there is completed when the last point has been examinated.
is a path from the triangle in front of the robot then with the example of figure 6, the final simplified path
we mark it. We then choose among these paths the one is (po - p3), (p 3 - p7) and (p7 - p8).
whose end is the closest to the goal.

When we test if a shortcut is possible, we have to
3.3 Simplifying the path check if it is not too close to any obstacle. This test is
Figure 4 shows clearly that these paths can't be per- made using two different distance functions: one that
formed without a further treatment: they are not computes the distance between two line segments (for
smooth at all. Depending on the shapes of the adjoining example when we test if (PO - P4) is not too close to
triangles the turn angle between each edge of the graph Obsl), and one that computes the distance between a
may be very big, resulting in a very jagged trajectory. line segment and a point (when we test if (P3 - P7) is
We propose a very simple method for simplifying and not too close to the extremity of Obs4).

The path before simpiificatlon

The simplified path

Figure 6: How we simplify the path

It is a very simple recursive treatment. Once we have
got the final simplified path, we just translate it into
orders we send to the robot. Posaiblepassage

Figure

Best SIMPLIFIED path
to go to the passage
closest to the g d

Part of the boundary of
the free space made of
real obstacles

The dd best path to go to
the %sage clcsestto the
eoay

Pad of the boundary of the
free epaca that Is neilhsr
a passage or an obstacle *-

@ n171p the robd must

The best simplified path computed from
7: the possible paths of the figure 4

If no path is found, then the robot will perform a safe
movement in the free space so that it can look in the
unexplored part of the room and maybe find a way to
go to the goal, as shown in figure 8.

References
[Aurgl] F. Aurenhammer. Voronoi ddiagrams - a survey of a fun-

damental geometric data structure. ACM Computing Sur-
veys, 23(3), September 1991.

[BFZSO] Michel Buffa, Olivier Faugeras, and Zhengyou Zhang.
Obstacle avoidance and trajectory planning for an indoors
mobile robot using stereo vision and delaunay triangulation.

When no path could be computrd the robot
Figure 8: just performs a small safe movement to see

a new area
In Proceedings of Roundtable Discussion on Vision-Based Ve-
hicle Guidance '90, pages 12.1-12.8, Science University of
Tokyo, July 1990. IEEE.

[BFZ92] Michel Buffa, Olivier Faugeras, and Zhengyou Zhang.
Obstacle avoidance and trajectory planning for an indoor mo-
bile robot using stereo vision and Delaunay triangulation. In
I. Masaki, editor, Vision-based Vehicle Guidance, chapter 13,
pages 268-283. Springer, New York, 1992.

[FLMBSO] Olivier D. Faugeraa, Elizabeth Lebraa-Mehlman, and
Jean-Daniel Boissonnat. Representing stereo data with the
delaunay Triangulation. Artificial Intelligence Journal, 44(1-
2), July 1990. Also INRIA Tech. Report 788.

[Flo88] L.De Floriani. A Survey of Constrained Dclaunay 2%
angulation Algorithms for Surface Representation, chapter I s
sues on Machine Vision. Springer-Verlag, 1988.

[GM79] A.L. Zobrist. G.K. Manacher. Neither the greedy nor the
delaunay triangulation of a planar set of points approximates
the optimal triangulation. Inf Proc Lett, 9:31-34, 1979.

[IB76] AK. Aziz I. Babuzka. On the angle condition in the finite
element method. Numerical Analysis, 13(2):214-226, 1976.

[Kli80] GT. Klingsek. Minimal triangulations of polygonal do-
mains. Computer Graphics and Image Processing., 9:121-
123, 1980.

[Llo77] EL. Lloyd. On triangulations of a set of points in the
plane. In Proc IEEE 18th Annual Symp on the foundations
of Computer Science., pages 228-240. IEEE, 1977.

[LM89] Elisabeth Lebras-Mehlman. Representation de
l'environnement d'un robot mobile. Phd thesis, Universite
de Paris-Sud, Centre d'Orsay, 1989.

[ODT90] S. Meiser 0. Devillers and M. Teillaud. Fully dynamic
delaunay triangulation in logarithmic expected time per o p
eration. Computational Geometry Theory and Applications.,
1990. To be published. Available as Technical Report INRIA
1349. Abstract published in LNCS 519 (WADS'91, august
1991).

[SHa78] M.I. SHamos. Computational Geometry. Phd thesis,
Yale University, New Haven, Connecticut, 1978.

[TCK92] David M. Mount Thomas C. Kao. Incremental con-
struction and dynamic maintenance of constrained delaunay
triangulations. In Proceedings of the Fourth Canadian Con-
ference on Computational Geometry., August 10-14 1992.

[WT92] Cao An Wang and Y. H. Tsin. Efficiently updating con-
strained delaunay triangulations. In Proceedings of the fourth
Canadian Conference on Computational Geometry, August
10-14 1992.

