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Abstract 
Smoothing (regularization), interpolation and surface reconstruc- 
tion are well known subjects in computer vision. The major dif- 
ficulty is to choose a model well suited for one of these goals and 
driven by a minimum number of parameters. Another problem 
also arises when we want to do one of these opemtiow adapta- 
tively, i.c. local features are processed in keeping m'th the applica- 
tion domain (e.g. cartography). Our goal is to present a discrete 
operator driven by only one parameter, allowing both global and 
local prvcessing of a surface and, well suited to smoothing, inter- 
polation and surface reconstruction. 

1 Introduction 
In this paper we present a discrete adaptative surface model well 
suited to the problem of surface regularization and rewnstruc- 
tion. This model is based on a well known analog network anal- 
ogy and, we show that, adaptativity is given by its ability to 
change its behaviour without modifying its intrinsic structure. A 
more complete study of this model has been previously given in 
141 and [5] but here we focus more on applications. Until now, 
a lot of works have been published in reconstruction and inter- 
polation of surfaces [6, 2, 1, 14, 15, 13, 121. Our contribution 
is focussed on the framework of DEM (Digital Elevation Model) 
processing and based on the description of a model and a discrete 
operator driven by a minimum number of parameters (only one). 

2 A discrete scaled operator 
Models baaed on analog networks have been already used in var- 
ious applications [ l l ,  7,8,9]. Our goal is to show that, from this 
kind of model, we can derive an operator to solve both smooth- 
ing from sparse data and surface reconstruction from relevant 2D 
structures. In the following we give the expression of this oper- 
ator, then we give two examples. (The complete description of 
the model from which we obtain our operator is given in [4,5]). 

Let R be a set of nodes pi distributed on a line (1D m e ) ,  we 
note 

V(pi) = {pk E 0 ,  1 i - k 1 = 1) , the neighbourhood of 
the node pi ; 

in t0  = {pi E R,  pi) C R),  the interior of the set 
a ;  
i3R = R - intR , the boundary of R ; 

In , the indicator function of the set R ; 

Let 4 E lR+ the coefficient which connect two points i and j 
and r. E RNxN the finite matrix given by 

1 
with yi = 1 + - . 

kE "b., a: 
This operator will appear in a linear _system V = I?;' p, where 

f' is a given vector. In the 2D csse V is an image stored in a 
vector form and V is the resulting transformed image. 

2.1 First case - Smoothing operator 
We wnsider an isotropic distribution of a , i.e. we make the 
assumption : at = a; = a = Const V i , k E int(R) . In this 
case the discrete operator I?;' is contractive i.e. it decreases 
the norm of all vector it is applied to (see [S]). In a geometric 
point of view, this operator reduce the curvature of all discrete 
function (vector). Then we cao solve the problem of smoothing 
from sparse data. We replace the previous 1D operator by its 
2D analogous, and we consider dconnectivity. Let V be a 2D 
discrete function. The value of the grey level of the resulting 
image, called V is given by 

An example of smoothing is given in fig(3). The data test given 
in fig(3)(a) are voluntary the same as [13] to compare the results. 
The ha1 solution in fig(3)(g) is very closed to the solution obtain 
by [13] with thin plate interpolant. 

2.2 Second case : Reconstruction operator 
We consider an anisotropic distribution of a, i.e. a: # a; Vi # 
k .  In this case, it is possible to put asymmetrical weights be- 
tween two points and therefore, the evolution law of the points 
are not identical. Consider the following scheme for natural sur- 
face rewnstruction 

[I] Take D the set of all points that belong to ridge lines or 
stream networks (assumed to be given by an external pro- 
m s ) ;  

[2] Two points i and j are. comected by a: in one direction 
and by 4 in the reverse direction. if we put a: # 4 one 
can influence a point more or less, according to the.value 
affected to the corresponding parameter. If we want a point 
i not to be influenced by others, but it should itself influence 
the others, we take a; = m and 4 = a : then the point 
i remains the same for all values of a, i.e. the location and 
altitude are p r e s e ~ e d  across the rewnstruction. 

[3] When all parameters are initialized, we solve the linear sys- 
tem r,V = for increasing values of a. 

We choose to tix only ridge lines, stream networks and bound- 
ary points, all the others are left to 0 (no information). Figs 
(4)(a,b) show the 3D representation of the original DEM, and 
the points that have to be fixed to make the reconstruction. 



These points are obtained with the algorithm described in [3]. 
Figs (4)(c,d,e,f) show the reconstruction obtained for different 
numbers of iterations (we solve I',Vntl = Vn with V" = V ). 
In figs (4)(g,h) we give the contour lines of the original and re- 
constructed DEM. These results are obtained by considering all 
surface points for the initialization of the algorithm. Some points 
are fixed (as in the first case) and the others are initialized with 
the original data. This leads to adopt a less brutal approach than 
in the first case where we have considered that no information is 
equivalent to 0. We can see that valleys are narrowed and the 
relief is more accentuated, but spatial morphology is relatively 
well conserved despite the smoothing. 

2.3 A remark about fixed point across scales 
In [4] we show that if a is the same between all points r, 
is the discretization of the heat equation with certain boundary 
conditions (the 1D heat equation is fi = (f,.). Suppose we are 
in the ID case, then fixing a point with a> = oo and 4 = a 
comes to put a 1 on the diagonal element of the line i of r, 
and 0 elsewhere on this line, that is 

This leads to an uncoupled system and this problem can be solved 
piecewise. However there may exist discontinuities of the first 
derivative on frontier points of each subdomain because the sta- 
tionnary solution tends to be linear between two boundary points 
(see fig (1)). Suppose that V is the domain that includes each 
solution (noted fD. ) computed in each separate subdomain Vi 
of D . Each of these fD. is obtained by solving the problem on 
each subdomain delimited by fixed points (without considering 
the natural boundary points a n ) .  Then V E i n t n ,  V = U V i  

is a set of contiguous domains and we can write the global solu- 
CardD 

tion as f D  = fDb lo, , where each f D b  is solution of the 
k=1 

following problem : assuming that the space variable z beiongs 
to [O,l] in each subdomain, { the diffusion coefficient and f the 
initial condition, we have to solve f? = { f; with conditions 
f t )  = fDb(0) on a? and fDh(l ,  t )  = f (1) on a? . 

Now if we want that on frontier points the solution belongs 
to C1 we have to introduce new wnditions at  these points. 
Suppose we want a null first derivative on frontier points. Then 
the problem has to be solved with four boundary wnditions and 
this is impossible because the degree of the partial differential 
equation is two. Then we consider the following problem where 
we act on the curvature of the initial condition instead of the 
initial condition itself : 

with conditions fDb(O,t) = j D ~ ( 0 )  on a? , fDL(1,t) = jDb(l) 
on a? , !f?!k9 = 0 on B? and a? . Here and a? 
denotes the &t and right boundary. This last equation has been 
evoked in [lO](pp.ll). Numerically, the connection between the 
scale parameter of this model and the first one (analog network) 
is straightforward by putting a = C-I 2 . The boundary con- 
ditions are inserted in the new matrix r, by putting Neumann 
conditions (null derivative) in the f i s t  and last line, and Dirichlet 
conditions (fixed points) in the sewnd and last but one line. In 
the initial case the numerical scheme was given by I.', = I-dlA 
and here J?, = I+ a-I (here A is the laplacian). One can see 
here the utility to consider the problem on a finite domain. In di- 
mension two this problem is different because the constraints are 
2D primitives (e.g. ridge lines), not inevitably closed and, in this 
case, it is not always possible to make piecewise computations. 

3 Conclusions 
We have presented a discrete operator which moults from an elec- 
trical analogy (see [4, 51). By making two different ~sumpt ions  
on the neighbourhood relations, we proposed two applications 
based on the use of the same operator. The first wncerns smooth- 
ing from sparse data and the sewnd concerns natural surface re- 
wnstruction. The results an encouraging and show the ability 
of this operator to take into sccount different neighbourhood re- 
lations. Moreover parallel implementation can be envisaged, due 
to the discrete nature and the structure of this operator. 
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Figure 1: Two connected subdomains. At the connection point (in the circle) the solution w not C' 

(4 (b) 
Figure 2: Solutions of rgu (2) : (a) Some solutions with j(z) = b ( x )  + 26(z - 1) ; (b) Stationnary solution with j(z) = z . (in the 2 
cases the 2 extremal points of the x domaw are fized and the derivatives on these points are 0) 

Figure 3: (a) Original points ; (b)(c)(d)(e)(f)(g) Intermediary interpolation steps . 



Figure 4:  ( a )  Original DEM; ( b )  Ridge line, stream network and boundary points ( 814 points - 20% of the original DEM points); 
( c )  2 iterations; ( d )  20 itemtions; (e) 80 iterations; (f)  150 itemtions. (we have taken a = 2). (g) Contour lines of the DEM 
given in (a); (h) Contour lines of the reconstructed DEM. 




