
MVA '92 IAPR Workshop on Machine Vision Applications Dec. 7-9,1992, Tokyo 

Long Image Sequence Motion Analysis Using Polynomial Motion Models 

Xiaoping Hu and Narendra Ahuja 
Beckman Instilute and Dept. of ECE, Univ. of Illinois 

405 N. Malhews Avenue, Urbana, IL 61801, USA 
Email: xh, ahuja@vision.csl.uiuc.edu 

ABSTRACT The cameracentered motion representation is ([1][5][6]): 

This paper presents two algorithms for estimating motion 
and structure from long monocular image sequences: one using 
interframe correspondences, the other using point trajectories. 
Object-centered motion represenfations and motion models &- 
scribed by up to the second order polynomials are used to estimate 
motion parameters from long image sequences. The algorithm 
automatically fvld the proper model that applies lo an image se- 
quence and give the globally optimal solution for the motion pa- 
rameters under the chosen model. The selection of motion model 
for rotation is independent from that for translation. Since the al- 
gorithms first solve for rotation parameters nonlinearly and then 
solve for translation and structure parameters in closed forms, 
they invlove less unknowns in the nonlinear search and are hence 
more robust and ejicient than existing long sequence algorithms. 
Experimental results with real image data are presented. 

1 Introduction 

In object-centered motion representation, everything is the same 
except that tij is represented as ([5][6]) 

J 
t,,, = [I - R,,] 01, + CTk + C Tk, (2.3) [ k = l  I k=:+l 

where Tt is the translation of rotation center 0 between the nth 
and n-lth frames, whose position at time 0 is 00. 

3 Rotation Models 
Polynomial and arbitrary rotation models are considered. 

i. Constant Rotation 
In this case. R, = R for all n and Rij reduces to 

This paper presents model based algorithms for estimating R,,, = RIA' . (3.1) 
motion and structure from point correspondences or trajectories 
in a monocular image sequence. Arbitrary motion and motion R is expressed in the three-angle representation ([5]) during 
desribed by up to the second order polynomials are considered. solution process and hence involves only three unknowns. 

The previous approaches [I] [2] [3] [4] solve for motion and 
structure parameters simultaneously, involving infeasible compu- 
tation complexity and making a globally optimal solution im- 
possible. Earlier [5] we have presented a stepwise algorithm 
for solving motion of constant acceleration using interframe cor- 
respondences. We now extend the method to arbitrary motion 
described by up to the second oder polynomial models. Exper- 
iments with real image data arc presented to demonstrate the 
performance of the algorithm. 

The existing approaches have exploited only the motion 
consistency and smoothness properties. When trajectories of 
points are available, structure consistency can be enforced to 
further improve estimation accuracy. A nonlinear formulation 
and a corresponding stepwise solution for motion and structure 
estimation using point trajectories are also presentd in this paper. 
This formulation can also make combined use of both interframe 
correspondences and point trajectories [6]. 

2 Motion Representations 
Let X, be the position of a space point at time n, R, and tn 

be the rotation and translation between nth and n-lth frames. and 

ii. Rotation with Constant Acceleration 
In this case, the rotation angle changes at a constant rate about 
a fixed axis: 

where n is the rotation axis, 4, the rotation angle at time n, and 
I the identity matrix. Since n is fixed, we have 

R,,, = 1111'- ( ni l - I  1 cosd,,,+n x Is in 4,,,, (3.3) 

where 

1 k(k - 1) 
= k = 7  C4k = j& + [a, - a3Jdo, ak = 1 1 =o j = - 2 .  

(3.4) 
To ease the solution, n is represented by two angles a and P as 

a, /3, 40, and 41 are the unknown rotation parameters. 

Rl.,=R,R,-i. .  .R,+i, t,,,=t,i- -2 R,,~tk.  (2.1) 
I = , + I  iii. Rotation Described bv Second Order Polvnomials 

In this case, the rotation velocity between two consecutive frames 
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from which we have and 
Rn = Ax(wf ; )A~(w! . )A~(wl ) .  (3.7) 

The rotation between two nonconsecutive frames is still expressed 
by Equation (2.1). Three vectors 00, S2.. and S2b are the un- 
knowns to be estimated. 

iv. Arbitrary Rotation Model 
In this case. no smoothness constraint about the rotation is en- 
forced during the solution. Therefore, all rotation matrices Ri, i = 
1.2. .... n, are considered to be independent and unknown, and are 
represented by the three-angle representation. Rotations between 
two nonconsecutive frames are expressed in the form of (2.1). 

4 'Ranslation Models 

Similar models are considered for translation. 

i. Constant Translation 
In this case, the rotation center translates at a constant velocity. 
That is. T. = To = T for all n. Equation (2.3) then reduces to 

from which we have 

where 

U i ,  = I-Ri , ] ,  Vi , j=jUi ,]+(j  - j ) I .  (4.3) 

ii. Translation with Constant Acceleration 
In this case, the rotation center's translation changes at a constant 
acceleration, that is. 

Then, the translation between ith and jth frame (i > j) 

from which we have 

x U : , ] ) ~ o  + ( t l , ,  Xv i , , )T0  + ( t , , ,  xWi , l  )T - 0 ,  a - 

where (4.6) 

W : , ~ = a l U i , ~  +(a, - a, 11.  (4.7) 

iii. Translation Described by Second Order Polynomials 
In this case. the rotation center's translation is approximated by 
a second order polynomial. That is. 

Then. the translation between the ith and jth frame (i > j) is 

where 

iv. Arbitrary lhnslation Model 
In this case, no smoothness constraint about the translation is 
assumed. Therefore, all translation vectors. Ti, i = 1. ;?.... n, are 
considered independent unknowns. Then, the translation between 
ith and jth frame (i > j) is 

from which we can obtain 

I 

( t i ,  x  Ri,k)tk = 0, (4.13) 
k=,+1 

where we assume Rid = I, and Rij is represented by (2.1). 

5 Solution Using Interframe Matches 
The algorithm is divided into three steps: 1). first solve for 

the rotation parameters nonlinearly; 2) solve for the translation 
parameters in a closed form; 3) compute the structure parameters. 

The solutions for the above rotation models are all the 
same. though different parameters are searched for to minimize 
the same criterion. Let = [z;] 31;~ 11". 0:' = 
[z;' y t l  11". p = 1.2, ..., Pij, be Pij pairs of correspondences 
between the ith and jth frames, where (xpiJ. ypiJ) and (x$@', y$j) 
denote the image coordinates in the ith and jth frames. Let 

Let Xij  be the least eigenvalue of nijTIIij. The rotation parame- 
ters for each model are searched for to minimize 

11 = C wi,, xi,, . 

Since IIijTnij is a 3x3 matrix, its eigenvalues can be obtained 
in a closed form. With good initial guesses from the two-view 
algorithms, globally optimal solutions are generally obtained for 
models of second or lower orders. 

After rotation parameters are obtained. the translation pa- 
rameters of the first three models are estimated in a closed form. 
First tij is obtained for all i and j with i > j using the two-view 
motion algorithm [5] and the estimated rotation parameters. Then 
00 and To (also T.. Tb) are solved for from Equations (4.2). (4.6). 
or (4.10) with the linear least squares method. The obtained Oo 
and To (also T., Tb) are then used to compute tij using again 
Equations (4.2). (4.6). or (4.10). The solution for the arbitrary 



model is also the same as that for the polynomial models except 
that Equation (4.13) instead of (4.2). or (4.6), or (4.10) is used. 

After the motion is solved for, we can integrate all infor- 
mation available about a point to get an integrated solution of the 
structure about the point. Consider the points in the first frame. 
Let 0 1  = (XI. yl. 1) be a point in the first frame that has come- 
spondences with points in any other views. Then we track 0 1  

in the image sequence to get its trajectories in a subsequence. 
Reorder the subsequence into a sequence and assume there are F 
frames in the sequence for 0 1 .  Therefore the problem is reduced 
to estimating the structure with known motions from a point tra- 
jectory over a sequence. We now consider the reduced problem. 

Assume we have a point trajectory over F frames with the 
point position in the ith view being Oi = [xi, yi. llT. Let Rij 
= (rrmij), tij = [tlii, t?, t81T (i > j) be the known rotation and 
translation between ith and jth views. We now need to solve for 
the depth Z1 of the point at time 1. This is done by searching 
Z1 such that the following error 

F 
S = qZi - a,Zl  + ( ~ Z I  t ti1)' (5.3) 

ciz1 + t;' + Y, - 
1 =2 c,Z1 + tf' 

is minimized, where 

S is the sum of squared distances between the observed point 
positions and the estimated positions assuming a depth value 
ZI. A good initial guess of 21 is obtained in a closed-form 
by minimizing 

6 Solution Using Point 'h~ectories  
Let Mi = Ril and Vi = ti'. Let Opr = [xPr, ypr, llT be the 

position of pth point in the fth frame. Let xPr = qr@,'. where 
&' is the depth. Then, the motion equation between thefth frame 
and the first frame for point p is given by 

Subtracting (6.1) for p = i from the equation for p=j, we get 

where 
sij = z,'o,' - z;o; (6.3) 

is the vector connecting the ith and the jth points. Equation (6.2) 
indicates that vectors ZirOir. z~'@~', and MrSij must be coplanar. 
Therefore we have the following equation which constitutes the 
basic equation for solution 

For any given @ij, the optimal solution of Sij subject to 
llSijll = 1 that minimizes 

is the eigenvector of @ijT@ij associated with @ i j T 4 j ' ~  least eigen- 
value Xij, which is the minimum value of t i j  for a given Oij. The 
problem that remains is to estimate the rotation parameters and 
minimize Xij. However. in order to solve for Mr. f = 2. .... F. 
uniquely, we need to consider all the points simultaneously. Let 

where wij is a weighting factor. An optimal solution of Mr. f = 2. 
..., F, that minimizes 11 requires nonlinear search of the rotation 
parameters. If the polynomial rotation models are used, much 
less unknowns will be involved for long sequence motion than 
when the arbitrary motion model is used. 

After Mr. f = 2. .... F, have been obtained somehow, depths 
and translation vectors can be determined in a closed form. First 
consider the depths in the first view. After Mr. f = 2, ..., F. 
have been solved for, the structure vectors Sij. i > j, can all 
be determined to within a scalar and chosen as the eigenvector 
of @ijT@ij associated with the least eigenvalue. Let the scaled 
solution of Sij be s,,. Then, because of equation (6.3) we have 
the following equation 

where a i j  is some constant to be determined. Using s i J  to 
cross-multiply both sides of Equation (6.7) we get the following 
equation for the depths 

which allows a linear least squares solution of P depths to within 
a scalar from 3P(P-1)/2 equations: 

BPI 0 0 Y P ~  

n B:V! Y:12 . . . o 
n pq2 o ... o 

where 

Now consider depths in other views. Let Sij be computed as in 
Equation (6.3) . and let xij' = MfSij. Then Equation (6.2) gives 



Using 0,' to take cross-product with both sides of the above 
equation. we obtain the following equation for &': 

Z' can be solved for linearly from the above equation by a least 
P 2 

squares method minimizing 1 Iz! (@I x 8;)  - x(, x 0; 1 I . 
, = I  

The solution is given in closed form by 

where 

After the depths are all obtained, the optimal solution of 
P 

translation vector Vr that minimizes I IZ/ 0; - Z ~ M  0; - V I 1' 
p=l 

is then given by 

Since translations can be solved for in closed form with well 
defined optimality criterion after the rotations are known, in 
general there is not much need to use the translation models if 
rotations are estimated in good accuracy. However, if a suitable 
model applies, the results can still be improved by applying the 
estimates of Vf = ti1 obtained as above to the model based 
estimation method for translation vectors discussed in the last 
section. An alternative solution of the translation vectors which 
allows polynomial motion models as well as arbitrary motion 
model is possible [6]. In that formulation. translation vectors 
instead of depths are solved for first. 

7 Automatic Selection of Motion Models 
A higher order model gives a smaller objective function 

value and needs a larger number of frames to stabilize the solu- 
tion, but the correct model gives the best estimation results. For 
real application. it is important to select the right model for the 
given data. There seems to be no efficient way except to apply all 
models to the same data and see what happens. For a sequence 
of a few images. probably only low order models apply. In the 
following. we assume a sufficient number (say 10) of frames is 
available so that all models can be used. 

Consider the rotation parameters first. In general, the two 
consecutive models give comparable results about lower order 
parameters. Then a decision is made about which model is the 
right one according to the estimation results. 

i. If the minimum objective function value 11 obtained by the 
first model is smaller than those obtained by other models. 
the first model is used. 

ii. Otherwise, obtain = (wxn, wyn, wzn) for each n for the 
third and second models. If the distance between the two 
solutions for any n is larger than a threshold (say 0.3'. 
determined according to the system resolution). the third 
model is used. 

iii. Else. obtain $2. for each n for the second and first models. 
If the distance between the two solutions at any time is 
larger than a threshold (say 0.3'), the second model is used. 
Otherwise, the first model is used. 

A similar but somewhat different procedure is used for de- 
termining the translation model [6]. For translation, two thresh- 
olds are used: one on translation direction, and the other on 
magnitude of translation. 

Using the above methods. the algorithm can automatically 
select the right model to solve for the motion parameters. It is 
worthwhile to note that the algorithm is so robust that even if 
a mistake2 is made about the model, the resulting estimation is 
still acceptable. 

8 Experimental Results 
This section presents two examples with real image data for 

the algorithm using interframe matches. The system setup and 
algorithm parameters are described in [5][6]. In the examples 
provided below, only the ground truth of rotation angles are 
accurately recorded, because of the difficulty in measuring the 
direction of the camera optical axis and the position of rotation 
center relative to the optical center. 

The first example contains a sequence of 20 images. Figs. 1 
(a) and (b) show the first and last images and the correspondences 
obtained. Figs. 1 (c) and (d) show the tenth and eleventh 
images and the correspondences. The motion involves a rotation 
of second order polynomial around the X axis ([I 0 OIT) with 
w$=0.42", w$=-0.08O, w$=0.008~,  and a translation of 
constant acceleration along Z axis ([0 0 llT) with parameters 
t i=1 .0 ,  t s - 0 . 0 6 ,  t i=0 .01 .  The rotation also causes a small 
translation along Y axis since the rotation center is not at the 
optical center. The estimated rotation parameters are: 

and the interframe translation direction vectors are, for exam- 
ple. 112 = [-0.03450. -0.06676. -0.997171. t~o,ll = [-0.02747, 
-0.177239, -0.991941. 11920 = [-0.00858. -0.17724, 4.984131, 
Only two interframe translations are not accurate, which are t7# = 
[-0.34273. -0.31138, -0.886331. and tli,ls = [0.25909. 0.68218. 
-0.683741, The estimation of interframe translation vectors is 
more vulnerable to noise in the image data. 

The second example also contains a sequence of 20 images. 
Figs. 2 (a) and (b) show the first and last images and the 
correspondences obtained between them. Figs. 2 (c) and (d) 
show the tenth and eleventh images and the correspondences. The 
motion involves a rotation of second order polynomial around the 

b Y axis ([0 1 01') with w:! = O.RO, wOy = 0.04O, w y  = 

In a s e  of noise, the algorithm tends to choose a polynomial of 
higher degree. This mistake is not serious and makes the estimates only 
somewhat less accurate. 



-O.OOsO, and a translation of constant acceleration along X directions. The estimated rotation parameters are: 
axis ([I 0 01') with parameters t& = 1.0, t $  = -0.04286. 
However, in this example, the rotation causes a translation along [RM917] , [ -n.0432' ]  [ 0.01774 ] 
Z axis that is comparable with the translation along X axis. fie= 0.37068 n,= 0.03860 fib= -0.00289 . 
Therefore, we do not know the ground truth of the translation 0.00017 -0.00282 -0.00004 

(a). The first image. (b). The nineteenth image. (c). The tenth image. (d). The eleventh image. 

Fig. 1: Example I. Figures (a) and (b) show the first and the last images and the correspondences between 
them; Figures (c) and (d) show the eighth and ninth images and the correspondences between them. 

(a). The first image. (b). The nineteenth image. (c). The tenth image. (d). The eleventh image. 

Fig. 2: Example II. Figures (a) and (b) show the first and the last images and the correspondences between 
them; Figures (c) and (d) show the eighth and ninth images and the correspondences between them. 
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