
MVA '92 IAPR Workshop on Machine Vision Applications Dec. 7-9,1992. Tokyo

FAST RASTER-TO-VECTOR CONVERSION OF LARGE-SIZE
2D LINE-DRAWINGS IN A RESTRICTED COMPUTER

MEMORY

Institute of Engineering Cybernetics
of the Belarusian Academy of Sciences

6, Surganov str., 220012 Minsk
Republic of Belarus

e-mail: mahaniok@adonis.ias.msk.su

ABSTRACT
An effective pipeline oriented scheme and new techniques

to process large-size 2D line-drawing images in a restricted
computer memory are suggested. The main differences of
our approach are a modified run-length image
representation on all processing steps, storing a limited
amount of image lines in memory, and new raster-to-vector
transform algorithms based on a set of local operations and
the same principles. Experiments performed on different
line-drawing types show that our approach allows:

- to process large-size binary images without dividing
them into parts in a restricted computer memory;
- to develop fast processing algorithms with low

computational complexity;
- to obtain acceptable time characteristics of raster-to-

vector conversion on a personal computer.
This approach can be easily realised in pipeline

architecture using simple transputer chain.

INTRODUCTION

The process of automatic input of 2D line-drawings into
CAD systems or Geographical Information Systems (GIs) is
very important for different applications. Many systems
have been developed to organize this process efficiently
[I-31. The most time consuming task in this process is
preprocessing of scanned binary images and their
conversion to vector form. There are two main problems for
the raster-twvestor (r-t-v) transform. Line-drawings have
usually large size (W A 1) that require a large amount of
memory for their storing. The second problem is a large
amount of operations performed during the r-t-v conversion
which takes an unacceptable processing time.

?b solve the first problem, the initial image is often divided
into parts that after vectorisation are joint back together.
There are some difficulties in processing part frames in this
way. Another approach is storing and processing in a special
buffer a limited number of adjacent image lines. In this case
the image can be processed line-by-line.

It is possible to reduce a volume of raster data by using
different coding techniques. The powerful and popular
coding technique is run-length (r-I) coding, which can be
easily obtained from a scanner. In papers [4,5] the
description of line-by-line processing and realization of
some preprocessing operations on this representation have
been given.

However, to obtain acceptable time characteristics most

of the systems use either powerful workstations or

specialized hardware. But for wide practical use it is
necessary to have systems based on a general purpose low
cost hardware.

In this paper we suggest an effective pipeline oriented
scheme and new techniques for processing of large-size 2D
line-drawing images represented by modified run-length
coding.

The main characteristics of our approach are:
- the possibility of processing large-size binary images in

a restricted computer memory without division them into
parts;

- the automatic calculation of object thickness;
- the satisfactory time characteristics for the r-t-v

transform.
As an input we consider: 1) engineering drawings and 2)

different black-and-white layers of geographical maps.

GENERAL PRINCIPLES O F IZASTER-TO-VECTOR
CONVERSION

The main tasks of this conversion are well known: noise
reduction, area extraction, thinning or contouring,
vectorization, approximation, and information recording in
data base. We assume that each of these tasks can be solved
using the same principles. It is supposed that the result of
any operation implementation to any line is fully determined
by only few adjacent lines. These lines (image stripe) are
stored in special buffers of program. Each program has
access to all of these Lines and can check, process and change
their pixels using some basic techniques. The lines in the
stripe are processed from bottom to top. The stripe moves
consequently on the whole image from top to bottom and all
operations are performed during this move. Therefore, we
obtain that after every stripe inspection the corresponding
operation is fully executed for the top line of the stripe. This
line is removed from the stripe and moves to next processing
function. A new bottom line is introduced in the stripe.

Every line in the stripe is represented by an ordered list of
x-coordinates of black (white) pixels, which have white
(black) pixels to the left. Usage the coordinates of the
beginning black and white runs instead of the run length (as
in a standard run-length representation) allows:
- to reduce a volume of raster data;
- to make more simple analysis of pixel neighbourhoods

and runs of adjacent lines;
- to reduce a computational complexity of processing

algorithms.

RASTER-TO-VECTOR TRANSFORM ALGORITHMS

Inside of the suggested approach, fast processing
algorithms have been developed. These algorithms are based
on a set of basic operations, which different combination is
used for every algorithm. Consider these algorithms in more
details.

NOISE REDUCTION. Three main algorithms for noise
rediction have been developed:

- logical mask filtering based on sequential 3x3 mask
analysis and parallel 8-dilation and erosion performed
simultaneously;
- small spots and holes detection and removal based on a

fast simplified contour following and modification of image
lines containing these elements;
- threshold smoothing of horisontal, vertical and diagonal

wntour protrusions and dents based on an original wncept
of "fuzzy raster straight lines" in the mentioned directions.

The last two algorithms use maximal parameters of defects
which age given a priori. All three algorithms can be used
either separately or together, consequently one by another.
The number of lines in the stripe depends from chosen
parameters.

Usually on engineering drawings and maps there are small
areas, like arrows and dots, which are better represented by
their contours. For their extraction we introduce the next
algorithm.

AREA EXTRACI'ION. Consider that we know a priori a
maximal thickness of elongated objects. Then image objects
are eroded according to a chosen parameter (half of maximal
object thickness). As structuring element we use a "raster
circle" representing discretized image of circle with a given
diameter. This operation deletes from the image all
elongated objects excepting internal parts of areas. Then we
subtract one image from another and obtain that on the
initial image all areas are represented by objects which
thickness is equal approximately to the thickness of all
elongated objects.

THINNING. Thinning algorithm is based on the
algorithm given in [6] and is modified for our approach and
representation. In the stripe, 2w + 2 lines are stored, where w
is a maximal thickness of objects. All lines in the stripe are
enumerated from bottom to top. Thinning is performed
from the first line (bottom) to the last (top) line. Object in
every line in the stripe is thinned different amount of times
(has different thickness). The lowest line is completly
unthinned and the highest one is fully thinned, all middle
lines are partially thinned. For thinning one line, two
adjacent lines (lower and upper) are used. Under pixel
analysis a mask is formed which represents a bbi t code.
Using this mask an input in a look-up-table is performed,
where a new pixel value is defined. A labelling of each full
thinned pixel is performed, and the labe: is equal to the
number of iterations performed.

VECTORIZATION. The transformation of thinned
image into a vector form is performed by one scan and
storing three lines in the stripe. In a medial line of the stripe,
black pixels are analysed using the Crossing number.
Depending on the Crossing number value, the following
situations are extracted: object beginning, end of object,
continuation, merging, splitting, node, and isolated point.

An algorithm for the situations processing has been
developed [8]. In the result of vectorization, object segments
bounded by end points and nodes are extracted. The simple
approximation- is simultaneously performed.

CONTOURING. Algorithm stores two lines in the stripe
and solves the following main tasks: extracting a situation in
the stripe and its solution. The possible situations on the
image are known: object beginning, continuation, splitting,
merging, end of the object. Algorithm for the situation
processing has been developed. Under the wntour
extraction, special buffers are reserved. They are intended
for the assembly and storing information about every
contour. Then the buffers can be merged or splitted
depending on the processed situation. Simultaneously with
the object contour extracting, geometrical parameters of
objects are calculated. The relations between processed
objects (e.g. one object is located inside another one) are
computed.

VECTOR DATA BASE OBTAINING. % form a vector
data base, polygonal approximation of segments is
performed simultaneously with the computing of
geometrical parameters. For the engineering drawing, under
segment approximation an arcextraction is performed. From
this step we either obtain the IGES or DXB AutoCAD file
represented by simple primitives or continue interpretation
process. Some of these techniques are described in more
detail in [I .

BASIC OPERATIONS

These basic operations are used in the described above
algorithms.

3x3 NEIGHBOURHOOD ANALYSIS USING
LOOK-UP TABLE. 'Ib analyse a neighbourhood of
processed pixel x, we perform alignment of intervals of two
adjacent lines (lower and upper) so that right end of black or
white interval is not less than n Thus pixel in a central
column have the same value and it is necessary to define last
6 pixels. In the result, 9-bit code of neighbourhood is
formed.% analyse a neighbourhood of next pixel it is
necessary only to add a right column of neighbourhood.
'Ib process pixel, a special look-uptable (LUT) is used. It

represents one-dimensional 256bytc array. Input to the
LUT is performed by using bbi t code that we obtain from
9-bit code of neighbourhood. Every element in the LUT
denotes the pixel type or action that must be performed to
process the pixel. Each processing algorithm uses its own
LUT. For example, the LUT for filtering defines a changing
black (white) pixels to white (black), thinning LUTwntains
pixel characteristics (deletable pixel, wmpletly thinned, etc).

PIXEL LABELING. The used r-l representation is not
wnvinient for pixel labeling. But this operation is used in
many algorithms. It is performed by storing a pixel line
representation together with r-l line representation. This
double line representation is permissible in our approach
because only a limited number of lines is stored in computer
memory. It allows to have a fast access to every pixel and
store label of the pixel. Every processing algorithm gives own
labels to pixels.

MODIFICATION OF IMAGE LINES. All processing
algorithms change an initial line representation. It is made in
one of the following ways:

- delete a black run by corresponding run labeling,
- run borders are changed by changing the border

coordinates;
- a new r-l line representation is formed in a new buffer.

FOLLOWING THE CONNECTED PIXEL CHAINS.
This operation is used to follow branches of borders or thin
objects, to merge or split them depending on a processed
situation. 7b perform chain following, two adjacent lines are
used. During the following, a calculation of branch
parameters and their description in terms of Freeman code
or simple polygonal line can be obtained.

SELECTION OF SIGNIFICANT PIXELS. The used r-1
representation allows to process only significant for
implemented operation pixels and reduce a computational
complexity of algorithms and their processing time. For
example, only black pixels are analysed under thinnning. A
white intervals are ignored and are not considered. This
principle is used in all algorithms too.

RESULTS AND DISCUSSION

The software for the realization of r-t-v conversion was
developed on an IBM PCIAT computer in C language. As
an input device we used a large-format scanner, constructed
in our Institute and a standard scanner A4 format. The
input binary images were obtained from black and white
layers of maps as well as from engineering drawings with
size A4-A2, digitazed with a resolution of 20 pixels per 1 mm
and 300 DPI. The raster data for the processing are
represented in PCX, TIFF or MSP format. Output format
now is IGES or AutoCAD DXB for engineering drawings in
terms of simple primitives and a special format for maps.

n o variants of r-t-v conversion have been developed:
"skeletonized" variant which obtains a skeleton object
representation of initial image and "contoured" one which
obtains a countour object representation. The results of
processing map layers and engineering drawings by
"skeletonized variant are shown in Fig.la,b,c and by
"contoured" variant in Fig.ld.

The execution time for every function usually does not
exceed few tens of seconds. The total time depends on the
number of objects, their length, and set of used functions.
The average time for the "contoured" conversion is equal to
1-2 minutes for A4 format of line-drawing scanned by 300
DPI, and 3-5 minutes for the "skeletonized" variant on
IBM PC/AT 386. The map layers with size 500x600 mm are
processed by the "skeletonized" variant 7-10 minutes.

The main differences of our approach from those already
proposed are:

- a modified run-length coding for the representation of
image on all steps, which allows to compress image and at
the same time to have an access to all pixels of adjacent lines;
- a specialized scheme for the processing, wnich is based

on the storing in memory a limited amount of lines;
-the algorithms for raster-to-vector transform which are

based on a set of local operations and the same principles;
- it can be easily realized in pipeline architecture using

simple transputer chain.
The performed experiments allow us to use and

recommend this approach for the realization of
raster-to-vector transform of large-size 2D line-drawing

images on personal computers with the restricted memoly
resources.

CONCLUSION

The approach for the processing 2D line-drawings in the
restrictions of memory has been suggested. The main
differences of this approach are: a modified run-length
image representation, line-by-line processing, a specialized
pipeline oriented scheme and processing algo~thms based
on a set of basic operations. This approach allows to process
large-size images with satisfactory time characteristics and
a satisfied quality. This approach can be easily realized in
pipeline architecture using simple transputer chain.

Now this work is continued on the recognition of basic
engineering drawing primitives and cartographical objects.

ACKNOWLEDGMENT

We wish to acknowledge the assistance of A.Grenw,
O.Patsko, N.Bereishik, 0.Okun and 1.Ljatkevich in
implementing and testing the system described in this
paper.

REFERENCES

1.R.Kasturi. S.TBow, W.El-Mastri, , J.Shah,
J.R.Gattiker, U.B.Mokate, A system for interpretation of
line drawings, IEEE Pans. on PAMI, l2, pp.98-992,1990.

ZA.Antoine, S.Collin, Klbmbre, Analysis of technical
documents: The REDRAW system, Proc. IAPR Workshop
on Syntactic and Structural Pattern Recognition, Murray
Hill, pp.1-20, 1990.

3. Computer. Special issue on systems of document image
analysis, July 1992, 113p.

4.D.Rutovitq Efficient processing of 2-D images, in
Progress in Image Analysis and Processing, VCantoni,
L.l?Cordella, S.Levialdi and Sanniti di Baja, Eds., World
Scientific, Singapore, pp.229-253,1990.

SJ.Piper, Efficient implementation of skeletonisation
using interval coding, Pattern Recognition Letters, No.3,
pp.389-397, 1985.

6J.Hildich. Linear skeletons from square cupboards, in
Machine Intelligence 4, B.Meltzer, Ed., Edinburgh
University Press, pp.404-420, 1%9.

7.0.Semenkw, S.Ablameyko, VBereishik, VStarovoitov,
Information processing and display in raster graphic
systems, Nauka i Xxhnika, Minsk, 183p., 1989, (in Russian).

8.SAblameyko,VBereishik, N.Pararnonwa, AMarcelli,
S.Ishikawa, KKato, Line-drawing description: from
skeleton to hierarchical vector representation, Proc. IEICE
Workshop on Pattern Recognition and Understanding,
PRU 91-75.24-25 October 1991, lbyama, Japan, pp.23-30,
1991.

Fig.1. Examples of 2D line-drawing processing by a-c) "skeletonized" variant,
d)"contouredW variant of raster-to-vector conversion.

