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Abstract 

An iterative algorithm for the detection of corner 
points on a digital curve is presented. T h e  algorithm 
does not require any input parameters and yields in- 
tuitively appealing results for pictures varying in size 
and orientation. We first calculate the changes in 
curvature over a supporting arc whose lengtli is ei- 
ther a fraction of the perimeter or given by tlie sub- 
arc bordered by two previously found corner points. 
We further scan the curvature changes, select all the 
pixels placed where the  curve bends are locally signif- 
icant, and finally mark maxima among the selected 
pixels as corner points. As the analysis is performed 
from a coarse to  a fine resolution, features of diKerent 
perceptual importance can be  found and accordingly 
labelled. Some examples are shown in order t o  illus- 
t ra te  the performance of the algorithm. 

1 Corner Points 

An important s tep towards shape analysis and de- 
scription is the representation of a shape by some 
simple and easy t o  handle elements. Suitable straight 
line segments, arranged s o  as t o  model the boundary 
of the shape, can be such elements. 

T h e  problem of finding the extremes of the seg- 
ments has often been regarded as tha t  of detect- 
ing the corner points on a digital curve, and several 
metliods have been proposed to this aim. IIowever, 
most of these metliods are tuned t o  a certain appli- 
cation or a class of pictures, and are not ensured t o  
yield really useful results wit11 input  pictures vary- 
ing in size and orientation over a wide range (see 
[1,2] and the  references therein). 

In tliis paper, we present the first results obtained 
by using an algorithm which, essentially, does not re- 
quire any input parameter and is to  a certain extent 
rotation and size invariant. 

Initially, boundary pixels are labelled with the 
curvature value obtained by computing the Gallus- 

Neurath code [3] over a supporting arc whose lengtli 
is a fraction of the  perimeter. Then,  for every con- 
nected subset of the boundary, made up by pixels 
with label greater than the code corresponding t o  the 
perceptually significant minimal bend of the bound- 
ary, one pixel is appropriately selected as a candidate 
corner point a t  tlie coarsest resolution. 

T h e  process is repeated for every arc, delimited 
by a pair of candidate corner points successively en- 
countered along the boundary. Since the Gallus- 
Neurath codes are computed over supporting arcs 
shorter than before, candidate corner points a t  finer 
resolution are found. T h e  process continues through 
further subdivisions of the  boundary, until no new 
candidate corner points can be detected. Finally, the 
set of the corner points is obtained from the set of 
the candidate corner points by removing those pix- 
els which give only a marginal contribution to the 
perception of the global shape. 

T h e  corner points can be grouped into dillkrent 
levels, depending on t h e  size of the  supporting arc 
in  correspondence of whicli they have been detected. 
Thus,  as one moves from a low to a I~igll resolution, 
some liierarchical knowledge about  the  shape is ob- 
tained. For both geometrical and blob-like figures, 
intuitively appealing results were achieved. 

2 Fundamentals 

Boundary-follower: Given a noise-free binary im- 
age, we scan the image from left to  right, top to  
bottom, until we find a pixel belonging to the ob- 
ject and with a t  least one of i ts  4-connected neigh- 
bours belonging t o  the background. We mark tliis 
pixel as a boundary-point, and scan the eight neigh- 
bours counter-clockwise, starting a t  a background 
pixel , until the next boundary-point is found. Then,  
we move on in a similar way, until the origin is 
reached again. We furtlier scan the image until 
we find another yet unmarked boundary-point, from 
where the same procedure is repeated. As a result, 



outer boundary components are followed counter- 
clockwise, wliereas inner boundary components are 
followed clockwise, and a n  array of coordinates for 
each boundary component is obtained. 

Cliain code: Tlie cliain code [4] describes the 
spatial relationship of consecutive boundary-points. 
Given a star t ing point pi,  one out  of a series of eight 
integers, f = 1 , 2 ,  ..., 8, indicates tlie direction in 
which the next adjacent boundary point lies. Tlie 
relation between pi and  pi+, is illustrated in the fol- 
lowing figure : 

Diflerential cliain code: T h e  difierential cliain code 
is defined as 

Ci  = fi - fi-l (1) 

and describes tlie relative change in direction oc- 
curring a t  point pi. It is also mentioned as tlie 1- 
curvature a t  point pi. 

N-code: T h e  N-code, or Gallus-Neurath code [3], 
is defined as 

where ci is the 1-curvature a t  point pi. 
Eacli c y  measures the change in slope between 

lines ( p , - ~ , p ~ )  and ( p i , p i + ~ ) ,  c y  = N indicates a 
change of slope of approx. 45O, while c y  = 2N an 
angle of approx. 90°, respectively. 

Tlie appropriateness of N-codes for evaluating cur- 
vature information lins been shown in [5]. 

3 Method 

For each boundary component, the coordiilates of 
tlie boundary-points, tlie chain codes, tlie dineren- 
tial cliain codes, and the N-codes are extracted and 
stored. As for the N-codes, they are computed with 
respect t o  a value of N chosen as 

where P indicates the lengtli of the boundary. Tliis 
choice corresponds to  a coarse approximation of a 

square to  the shape, as we draw illforination from an 
arc of length P /8  on both sides of a point, i.e. from 
a supporting arc of length P/4. 

At a coarse resolution, boundary points wliere the 
slope changes more than 45O, are assumed to be 
placed in correspondence with significant bends. Ac- 
cordingly, the. tlireshold 

is chosen, and all tlie points with I c y  I 2 to  are 
marked. 

Connected sets of marked points are regarded as 
intervals and,  t o  avoid scattered points, an interval 
growing procedure is applied. Namely, for each in- 
terval we add on both sides the adjacent unmarked 
points for which [ c? I 2 max(t0 - 1,2) .  Then,  in an 
additional scan of the N-cliain, we delete all intervals 
oC unit length and,  in the  remaining intervals, mark 
as peak the point where I c y  I is a maximum. If in 
one interval there are more than one point with tlie 
same maximum I cf' 1, tlie middle point is marked. 

Recursively, tlie N-codes are computed for the sub- 
strings between two successive peaks. The  value for 
N is still given by formula (3), where P is now tlie 
lcngth of the substring. IIowever, differing from be- 
fore, we do not compute the N-codes in correspon- 
dence t o  tlie N-1 points placed a t  each end of tlie 
substrings, so  as to  diminish the influence of pre- 
viously found peaks. Moreover, in order to  detect 
smootlier details of the boundary with any further 
iteration, the threshold decreases with the depth of 
the iteration, and is given by 

Also, unit length intervals are no longer discarded. 
If all the found pealts were taken as corner points, 

this procedure is likely t o  create a number of redun- 
dant  points. Thus,  we accept as corner points only 
tliose pealts surviving a triangulation process, which 
does not significailtly alter the way tlie sequence of 
resulting seg~nents  approximates tlie input boundary. 

For each triple {p,,pb,p,) of peaks, we compute 
the distance d from pb to tlie straight line through 
pa and p,. If d 2 1, we mark pb as a corner point 
and move to the next triple {p,,p,, p,,). If d < I ,  
we move p, t o  the next peak, p , ~ ,  and let pb take tlle 
position of all tlie peaks between pa and p , ~ ,  For all 
these triples we calculate d, and if max(d1, d z ,  ..) 2 1 
we mark the peak with max(d) as corner point. Then 
we move on to the next triple. Tliis procedure is 
repeated until the starting point is reached again. 

Finally, the polygon approximating tlie boundary 
is created by joining pairs of corner points, as they 
are encountered when following tlie boundary. 



4 Experimental Results 

The  a l g o r i t l ~ n ~  has been tested with several shapes, 
and the pointwise error ei between the boundary and 
the approximating polygon has been adopted to eval- 
uate the results. T h e  following error norms have 
been taken into account : 

(a)  Integral square error 

(b)  Rlaximum error 

Em = max e ,  
l j i l n  

T l ~ e  performance of the algorithm is illustrated in 
figures 1 to  4. 

T h e  algori t l~m has been implemented in C lan- 
guage on a SUN 3 computer. 

5 Concluding Remarks 

T h e  proposed algorithru, which can be ascribed to 
the split and merge class, compares favourably with 
most other algoritl~ms devoted to corner point detec- 
tion. Particularly, taking a recent algorithm by Teh 
and Chin [2] as a measure, we do not only excel in 
processing time, but  in a.ppropriateness of the found 
corner points as well. 

Future efforts s l~ould be devoted t o  improving the 
hierarchical representation. With the actual pro- 
cedure, taking the first two iterations provides a 
coarse, bu t  often sufficient approximation in most 
cases. A somehow better approximation seems pos- 
sible if more than one peak is detected in correspon- 
dence with certain intervals. In later iterations, we 
detect often too ma.ny pealts and the adopted hierar- 
cl~ical labelling, simply dependent on the  size of the 
supporting arc, is nct  a.lways easy t o  be profitably 
interpreted. Furthermore, for a given substring, we 
do not detect any additional peak near t o  the ends 
of the substring. This  is often desirable, but  t l ~ e r e  
are cases ~ v l ~ e r e  some information gets lost. Finally, 
the triangulation process should be improved in or- 
der t o  avoid the deletion of pealts detected a t  coarse 
resolution, wllich is likely t o  damage the l~ierarcl~ical 
represelltation. 
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Explnnntions : 
---- Input figure 

Approxinlated fi gure 
o Dominant or corner-points 

Figure 1: Four octagons of different size. Size invari- 
ance is demonstrated for perilllet.ers from 140 pixels 
up t o  320 pixels. Triangulation does not removr any 
points. 
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Figure 2: A curve with four semicircles, rotated in 
memory by 45O, 90°, 135O, respectively. 

I n t  Sq  Error - 15.01 
Proc.  ~ i m .  - 0 . 2 0  . 

Figure 3:  Effect of triangulation on State of Texas. 
a) Before triangulation. b) After triangulation. R i -  
angulation yields a compression of ca. 1.5. 

Figure 4:  IIierarchical approximation of a plane. 
a) Input picture. b) Vertices found during first it- 
eration. c) Vertices of first and second iteration. 
d) Final approximation with three iterations. R i -  
angulation does not remove any points. 

Figure 5: Four octagons of different size. Output 
for the Teh-Chin algorithm. Please compare with 
Figure 1. 




