
MVA '90 IAPR Workshop on Machine Vision Applications Nov, 28-30,1990, Tokyo

A Coarse to Fine Corner-Finding Method

Carlo ARCELLI~ Andreas HELD$ I<eiichi A B E ~

t Istituto di Cibernetica, C.N.R., 1-80072 Arco Felice, ~ & ~ l e s , Italy
t Dept. of Computer Science, Shizuoka University, Hamamatsu, Japan

September 13, 1990

Abstract

An iterative algorithm for the detection of corner
points on a digital curve is presented. T h e algorithm
does not require any input parameters and yields in-
tuitively appealing results for pictures varying in size
and orientation. We first calculate the changes in
curvature over a supporting arc whose lengtli is ei-
ther a fraction of the perimeter or given by tlie sub-
arc bordered by two previously found corner points.
We further scan the curvature changes, select all the
pixels placed where the curve bends are locally signif-
icant, and finally mark maxima among the selected
pixels as corner points. As the analysis is performed
from a coarse to a fine resolution, features of diKerent
perceptual importance can be found and accordingly
labelled. Some examples are shown in order t o illus-
t ra te the performance of the algorithm.

1 Corner Points

An important s tep towards shape analysis and de-
scription is the representation of a shape by some
simple and easy t o handle elements. Suitable straight
line segments, arranged s o as t o model the boundary
of the shape, can be such elements.

T h e problem of finding the extremes of the seg-
ments has often been regarded as tha t of detect-
ing the corner points on a digital curve, and several
metliods have been proposed to this aim. IIowever,
most of these metliods are tuned t o a certain appli-
cation or a class of pictures, and are not ensured t o
yield really useful results wit11 input pictures vary-
ing in size and orientation over a wide range (see
[1,2] and the references therein).

In tliis paper, we present the first results obtained
by using an algorithm which, essentially, does not re-
quire any input parameter and is to a certain extent
rotation and size invariant.

Initially, boundary pixels are labelled with the
curvature value obtained by computing the Gallus-

Neurath code [3] over a supporting arc whose lengtli
is a fraction of the perimeter. Then, for every con-
nected subset of the boundary, made up by pixels
with label greater than the code corresponding t o the
perceptually significant minimal bend of the bound-
ary, one pixel is appropriately selected as a candidate
corner point a t tlie coarsest resolution.

T h e process is repeated for every arc, delimited
by a pair of candidate corner points successively en-
countered along the boundary. Since the Gallus-
Neurath codes are computed over supporting arcs
shorter than before, candidate corner points a t finer
resolution are found. T h e process continues through
further subdivisions of the boundary, until no new
candidate corner points can be detected. Finally, the
set of the corner points is obtained from the set of
the candidate corner points by removing those pix-
els which give only a marginal contribution to the
perception of the global shape.

T h e corner points can be grouped into dillkrent
levels, depending on t h e size of the supporting arc
in correspondence of whicli they have been detected.
Thus, as one moves from a low to a I~igll resolution,
some liierarchical knowledge about the shape is ob-
tained. For both geometrical and blob-like figures,
intuitively appealing results were achieved.

2 Fundamentals

Boundary-follower: Given a noise-free binary im-
age, we scan the image from left to right, top to
bottom, until we find a pixel belonging to the ob-
ject and with a t least one of i ts 4-connected neigh-
bours belonging t o the background. We mark tliis
pixel as a boundary-point, and scan the eight neigh-
bours counter-clockwise, starting a t a background
pixel , until the next boundary-point is found. Then,
we move on in a similar way, until the origin is
reached again. We furtlier scan the image until
we find another yet unmarked boundary-point, from
where the same procedure is repeated. As a result,

outer boundary components are followed counter-
clockwise, wliereas inner boundary components are
followed clockwise, and a n array of coordinates for
each boundary component is obtained.

Cliain code: Tlie cliain code [4] describes the
spatial relationship of consecutive boundary-points.
Given a star t ing point pi, one out of a series of eight
integers, f = 1 , 2 , ..., 8, indicates tlie direction in
which the next adjacent boundary point lies. Tlie
relation between pi and pi+, is illustrated in the fol-
lowing figure :

Diflerential cliain code: T h e difierential cliain code
is defined as

Ci = fi - fi-l (1)

and describes tlie relative change in direction oc-
curring a t point pi. It is also mentioned as tlie 1-
curvature a t point pi.

N-code: T h e N-code, or Gallus-Neurath code [3],
is defined as

where ci is the 1-curvature a t point pi.
Eacli c y measures the change in slope between

lines (p , - ~ , p ~) and (p i , p i + ~) , c y = N indicates a
change of slope of approx. 45O, while c y = 2N an
angle of approx. 90°, respectively.

Tlie appropriateness of N-codes for evaluating cur-
vature information lins been shown in [5].

3 Method

For each boundary component, the coordiilates of
tlie boundary-points, tlie chain codes, tlie dineren-
tial cliain codes, and the N-codes are extracted and
stored. As for the N-codes, they are computed with
respect t o a value of N chosen as

where P indicates the lengtli of the boundary. Tliis
choice corresponds to a coarse approximation of a

square to the shape, as we draw illforination from an
arc of length P /8 on both sides of a point, i.e. from
a supporting arc of length P/4.

At a coarse resolution, boundary points wliere the
slope changes more than 45O, are assumed to be
placed in correspondence with significant bends. Ac-
cordingly, the. tlireshold

is chosen, and all tlie points with I c y I 2 to are
marked.

Connected sets of marked points are regarded as
intervals and, t o avoid scattered points, an interval
growing procedure is applied. Namely, for each in-
terval we add on both sides the adjacent unmarked
points for which [c? I 2 max(t0 - 1,2) . Then, in an
additional scan of the N-cliain, we delete all intervals
oC unit length and, in the remaining intervals, mark
as peak the point where I c y I is a maximum. If in
one interval there are more than one point with tlie
same maximum I cf' 1, tlie middle point is marked.

Recursively, tlie N-codes are computed for the sub-
strings between two successive peaks. The value for
N is still given by formula (3), where P is now tlie
lcngth of the substring. IIowever, differing from be-
fore, we do not compute the N-codes in correspon-
dence t o tlie N-1 points placed a t each end of tlie
substrings, so as to diminish the influence of pre-
viously found peaks. Moreover, in order to detect
smootlier details of the boundary with any further
iteration, the threshold decreases with the depth of
the iteration, and is given by

Also, unit length intervals are no longer discarded.
If all the found pealts were taken as corner points,

this procedure is likely t o create a number of redun-
dant points. Thus, we accept as corner points only
tliose pealts surviving a triangulation process, which
does not significailtly alter the way tlie sequence of
resulting seg~nents approximates tlie input boundary.

For each triple {p,,pb,p,) of peaks, we compute
the distance d from pb to tlie straight line through
pa and p,. If d 2 1, we mark pb as a corner point
and move to the next triple {p,,p,, p,,). If d < I ,
we move p, t o the next peak, p , ~ , and let pb take tlle
position of all tlie peaks between pa and p , ~ , For all
these triples we calculate d, and if max(d1, d z , ..) 2 1
we mark the peak with max(d) as corner point. Then
we move on to the next triple. Tliis procedure is
repeated until the starting point is reached again.

Finally, the polygon approximating tlie boundary
is created by joining pairs of corner points, as they
are encountered when following tlie boundary.

4 Experimental Results

The a l g o r i t l ~ n ~ has been tested with several shapes,
and the pointwise error ei between the boundary and
the approximating polygon has been adopted to eval-
uate the results. T h e following error norms have
been taken into account :

(a) Integral square error

(b) Rlaximum error

Em = max e ,
l j i l n

T l ~ e performance of the algorithm is illustrated in
figures 1 to 4.

T h e algori t l~m has been implemented in C lan-
guage on a SUN 3 computer.

5 Concluding Remarks

T h e proposed algorithru, which can be ascribed to
the split and merge class, compares favourably with
most other algoritl~ms devoted to corner point detec-
tion. Particularly, taking a recent algorithm by Teh
and Chin [2] as a measure, we do not only excel in
processing time, but in a.ppropriateness of the found
corner points as well.

Future efforts s l~ould be devoted t o improving the
hierarchical representation. With the actual pro-
cedure, taking the first two iterations provides a
coarse, bu t often sufficient approximation in most
cases. A somehow better approximation seems pos-
sible if more than one peak is detected in correspon-
dence with certain intervals. In later iterations, we
detect often too ma.ny pealts and the adopted hierar-
cl~ical labelling, simply dependent on the size of the
supporting arc, is nct a.lways easy t o be profitably
interpreted. Furthermore, for a given substring, we
do not detect any additional peak near t o the ends
of the substring. This is often desirable, but t l ~ e r e
are cases ~ v l ~ e r e some information gets lost. Finally,
the triangulation process should be improved in or-
der t o avoid the deletion of pealts detected a t coarse
resolution, wllich is likely t o damage the l~ierarcl~ical
represelltation.

Acknowledgements

Par t of this work has been done during the sojourn of
one of the authors (C. Arcelli) a t the Department of
Computer Science of Shizuolta University. The stay
has been fully supported by the Scientific Agreement
between the Japan Society for t l ~ e Promotion of Sci-
ence and t l ~ e National Research Council of Italy.

References

[l] L. S. Davis, "Understanding Shape: Angles and
Sides", I E E E Trans. Comp., no 3, pp 236-242,
1977

[2] C. Tell and R. T . Chin, "On t l ~ e Detection
of Dominant Points on Digital Curves", I E E E
Trans. Pat tern Anal. Machine Intell., vol
PAMI-11, No 8, pp 859-872, Aug. 1989

[3] G . Gallus and P. W. Neurath, "Improved
Computcr Cl~romosome Analysis Incorporating
Preprocessing and Boundary Analysis", P l~ys .
Aled. Biol., vol 15, no 3, pp 435-445, 1970

[4] 11. Freeman, "On the Encoding of Arbitrary Ge-
ometric Configurations", I R E Dans. , vol EC-10,
pp 260-268, 1961

[5] A. R.. Dill, M. D. Levine and P. B. Noble, "Mul-
tiple Resolution Slteletons", I E E E Trans. Pat-
tern Anal. Alaclline Intell., vol PAMI-9, No 4,
pp 495-503, July 1987

Explnnntions :
---- Input figure

Approxinlated fi gure
o Dominant or corner-points

Figure 1: Four octagons of different size. Size invari-
ance is demonstrated for perilllet.ers from 140 pixels
up t o 320 pixels. Triangulation does not removr any
points.

118 " i t h 0 " t t.i.n..,
Ma". error . 1 . 0 0
Proc T l n e - 0 . 1 1 ..c Prac ~ l n . - 0 . 2 2 mec

Figure 2: A curve with four semicircles, rotated in
memory by 45O, 90°, 135O, respectively.

I n t Sq Error - 15.01
Proc. ~ i m . - 0 . 2 0 .

Figure 3: Effect of triangulation on State of Texas.
a) Before triangulation. b) After triangulation. R i -
angulation yields a compression of ca. 1.5.

Figure 4: IIierarchical approximation of a plane.
a) Input picture. b) Vertices found during first it-
eration. c) Vertices of first and second iteration.
d) Final approximation with three iterations. R i -
angulation does not remove any points.

Figure 5: Four octagons of different size. Output
for the Teh-Chin algorithm. Please compare with
Figure 1.

