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The problem of integrating territorial information within a 
multisensor vision system for autonomous-vehicle control is 
addressed. Environmental information is used to improve 
recognition results and to locate a vehicle's position in the 
coordinate reference frame of a map. To this end, a 
hypothesis-and-test search mechanism has been developed, 
which is based on an associative phase and a symbolic. In 
particular, an associative memory is first used to address the 
possible territorial area where the scene under examination 
may have been acquired. This guess is then verified by a 
symbolic recognition system using a model-driven strategy. 

The integration of multiple information sources is basic to 
obtain an accurate recognition of 3D outdoor scenes, 
especially when controlling an autonomous vehicle. In this 
paper, we address the problem of integrating territorial 
information into a multisensor vision system for autonomous 
driving. A set of synthetic images, representing significant 
viewframes reconstructed from an a-priori fixed route on a 
territorial map are first stored in an associative memory [9]. 
This process represents the training phase of the associative 
memory. Images acquired by a multisensor set-up are then 
processed by the associative memory in order to produce an 
estimation of the vehicle position inside the map reference 
frame. This strategy makes it possible to arrange the search 
space, in such a way as to avoid the search in the whole 
model space, thus obtaining a better computational 
performance. This initial guess gives a position estimation 
which is then verified by the recognition system by looking for 
objects associated with the viewframe. This process is 
performed at a high abstraction level, and consists in an 
expectation-driven search starting from symbolic object 
descriptions and using a version of a distributed blackboard 
system for recognition [4], where a module devoted to scene 
analysis has been inserted. 

The paper is organized into in four sections. Section I1 
deals with a general formulation of the problem, pointing out 
the characteristic of the sensors employed . Section Ill 
contains a brief review of associative memory techniques, and 
Section IV contains a description of the model here employed 
and it reports preliminary results obtained on a set of real 
images and on the related territorial map. 

terrain map are transformed so that they can be fused with 
data acquired with a TV-camera, . Then, the recognition 
process performed at the symbolic level is described. 

21 cartographi virtual sensor 
A topologic map (TM) representing a scenario through 

which an autonomous vehicle can ride provides useful 
information to be used by a multisensor recognition system. 

Two intermediate steps have to be performed to obtain a 
representation of the information contained in the map that it 
can be compared directly with data provided by visual 
sensors: first, a 3D model of the environment must be 
obtained; then an observation model must be provided 
allowing the system to simulate the acquisition of data as 
similar as possible to those coming from the visual sensor. 

22 3C) Model 
Starting from a digitized image, like the one in Fig. 2, it is 

possible to detect two kinds of basic primitives which can be 
used to describe the environment model: lines located at 
equal height, (i.e. the so called contour lines) and landmarks 
(i.e., significant patterns which can be recognized by the 
system (see Fig. 3)). Using processing techniques and 
reconstruction algorithms (whose descriptions go beyond the 
scope of this paper), it is possible to obtain from contour lines 
a 3D map in the form of a matrix, F(x.y)=Z, where Z is the 
height computed at point (x,y) of TM. The next step is to 
place landmarks on the 3D ground map. Landmarks are 
usually characterized by regular shapes (e.g.. as a first 
approximation level, houses can be represented as 
parallelepipeds). A generic landmark Li is associated with the 
matrix Li(x,y) = 2'. Then, a complete a-priori environment 

model, F** can be obtained through an appropriate 
transformation of F. This operation is called landmark 
positioning, and can be modeled as a transformation over the 
original ground map, considering its landmarks: 

In this way, one can obtain a representation of the 
information contained in the map by indicating the contour 
lines and some characteristic objects which can be observed 
during the mission. 

23Theobsenratiimodel 

The environment model, F*# can be observed with a 
camera emulator C, which takes as input the coordinates of 
the viewpoint (xo,yo), the axis of the visual direction (2,) and a 

2THE RVTERPRETATION PROBLEM vector of the camera parameters P, (e.g., depth of field, focus, 
etc.). The camera emulator performs a perspective 
transformation which allows one to obtain a 2D view (F2D). 

This section deals with the general formulation of the 
recognition process. It is explained How data provided by C ( (XO,~~),  Zv, P) ------> F2D(x1,y') 



F2D is called a viewframe of the environment F*, and it 
represents a synthetic visual image with coordinates (x', y'), to 
be compared with the images provided by a sensor during 
the mission. In our system we have used routines of the HP 
STARBASE package to implement the camera emulator C. 

2 4  Dynamic Environment 
Given a sensor model C and an environment model F** we 

can define a mission M as a sequence of points in the 
reference system of the map Nvi=(xvi, yvi) 

We can associate a set of a-priori viewframes with the 
mission M, provided that we take Zvi=(Nvi+1 - NVi), i.e., at 

each point, the camera axis is directed to the next point to be 
reached, and provided that we mantain fixed the camera 

parameters vector P* during the mission. Consequently we 
define 

c ( N ~ ~ , z ~ ~ , P * )  = F2DVi where Nvi belongs to M 

where V denotes the set of a-priori viewframes representing 
the a-priori knowledge about the observations that a sensor 
can make during the mission M. The problem of identifying 
the position of the vehicle in the environment can now be 
formulated as the problem of associating with an image Sj at 
time t, (i.e., Sj(t)), a viewframe F2DVi belonging to V, where j 

indicates the j th sensor of the autonomous vehicle. Small 
shifts from the position Nvi should be tolerated by the system. 

We solve this problem by using signal processing and data 
fusion techniques. We can consider TM and Si as two 
information sources whose data must be fused ii order to 
obtain a single description of the current scene considered. 

We have to select the viewframe F2DVi3 which exhibits the 
greatest similarity to the sensors' data. 

Two representation levels can be considered as possible 
candidates for data-fusion: the image level and the symbolic 
description level. In the following subsection, we shall discuss 
the symbolic level; the techniques employed for the image 
level will be described in more detail in the next section. 

2 5  Symbolic desaiption level 

Each a-priori viewframe F2DVi can be described in a 
symbolic way as a list of landmarks (s2DVi) that are visible 

inside F2DVi and of relationshipsamong such landmarks: 

Each object Lk is described in a proposlional way by 
defining its intrinsic and relational attributes. 

We suppose that a recognition system is available that is 
able to answer about the presence of a certain object inside a 
given scene, starting from Si(t*) data. Then the problem of 

identifying which viewframe F2DVi has generated Sj(t*) can 

be solved at the symbolic level by considering the list s2DVi 
associated to each viewframe Vi, and by progressively 
discarding those viewframes which do not contain the 
searched landmark. This can be obtained by asking the 
recognition system yeslno queries about the presence of a 

landmark. This procedure is very heavy, especially in terms 
of response time of the recognition system. A statistical 
approachto the landmark choice is used. Each landmark is 
associated with an a-priori probabilh P(L;) computed on the 
basis of the number of occurrences of the object, in the set 
of stored viewframes. Therefore, the object with the highest 
probabilty is searched for in the scene. We have used the 
system DOORS [4] to implement this strategy; even though 
results are good from the point of view of recognition, it is 
necessary to speed up the system in order to improve 
response time related to search operations. 

Therefore, an associative indexing technique is currently 
under development, which allows the system to rank, in an 
efficient way, the starting set of viewframes and, 
consequently, the set of landmarks contained in them. 
According to the landmarks ranking, propositional 
descriptions to be searched for are selected by the 
recognition system, in order to check, in a symbolic way, 
whether the chosen viewframe is supported by the actual 
image Sj(t*). At this point, if the system replies that a certain 

landmark associated to the selected s ~ D ~ ~  is absent from the 
scene, a backtracking strategy is activated. This can be 
performed at the symbolic level by taking from the list the 
viewframes that contain that landmark, and by continuing the 
search process on the remaining viewframes. The application 
of the associative technique increases the conditional 
probabilities P(L4A) 's of those objects which are supported 

by associative matching. These probabilities are conditioned 
by the goodness of the associative matching scheme A. The 
average response time is expected to be reduced. In the 
following we describe how we can liml the search space by 
using an associative memory model. 

3.THE ASSOCIATIVE DEVICE 

In this section, we explain the employed associative memory 
model. 

Several models have been proposed in the llerature to 
simulate associative behaviour. The classic definition of 
Kohonen's correlation-matrix memories [6] implies a matrix- 
vector multiplication for storing and retrieving information. A 
few attemps have been made to apply such model to pattern 
analysis; the most recent work in this field is presented in [7], 
where emphasis is placed on scale and rotation- invariance 
features. The model adopted in the present paper is the 
associative noise-like cod in^ memory described in [I ] .  The 
related mathematical framework is derived from the 
holographic model of associativity proposed by Gabor [S] and 
based on the complementary operations of convolution and 
correlation. 

3.1 lnfonnation storage and retrieval 
Any associative model involves three kind of components: a 

memory device, the pattern@) to be stored, and the 'keys' 
associated wlh each pattern and used for both information 
storage and retrieval. In detail, the data structure are the 
following: 

a 'memory device' square matrix, say M[1 ..N,l ..N], which 
holds the results of memory-writing cycles (convolutions); 

a square matrix P[l..N,l..N], which codes an image to be 
stored in M; the elements of P can assume values included in 
the gray-level range imposed by the vision system's 
characteristics; 

a square matrix R[l..N,l..N], used to hold the results of 
data retrieval from M; 

* a Key-matrix, K[l..N,l..N], with the following 
characteristics (noise-like coding): 



a. if we assume Kij to be a stochastic variable associated 

with the matrix element K[i,j], then Kij is independent of Kks 

wheni= ko r j=s ;  
b. K[r,s]=O or E(Ki,)=O (mean value); 

c. K is normalized, that is, ~ [ r . s ] ~  = 1; 
d. different keys matrices do not correlate with one 

another. 
In the following, the process by which a key is derived from 

a pattern will be denoted by K-GEN. 

MEMORY WRITING is performed by means of the -- 
convolution operation: 

MEMORY READING is performed by means of the -- 
correlation operation: 

Results of single convolutions are summed up to build a 
complete memory; this implies that the order followed in 
information storage does not affect the system's performance. 
If the noise-like coding conditions imposed on keys are 
fulfilled, the matrix Rh (recall of pattern Ph) will be close to Ph. 

This can be expressed as 

for memory writing, and as 

for information retrieval from the memory. 

3.2 Use d the associative memory to perform image 

The theoretical analysis is presented in [2], showing how 
pattern classification can be performed within the framework 
described in the previous subsection. The general problem is 

to identify which of a set of prototype patterns (images F ~ D " ~  

in our case) is closest to an unknown input pattern si(t*). 

The principle of operation is that error variance is a 
discriminating parameter that allows one both to detect a 
prototype candidate for classification and to have a reliability 
measure of such a conclusion. 

When an image to be classified is supplied, first a key is 
derived from it by using K-GEN; then the key is employed to 
perform a memory recall cycle. Finally, the system computes, 
for each image in the set of prototypes, the 'error matrix'. 
defined as: 

Each element dij(h) of Dh can be viewed as a stochastic 

varible, and the minimum variance of dij(h) will be associated 

with the (h-th) prototype that is closest to the input image 
supplied. The effectiveness of this discrimination principle is 
analyzed in (31. Fig. 1 shoes the overall functional schema of 
the system. 

4. THE CLASSIFICATION TASK 

The above associative classification system operates within 
a vision system [4,8] for the evaluation of an autonomous land 
vehicle's position. 

In our case, the set of viewframes are used as 
prototypes to be stored in the associative memory, while Si(t*) 

provides the current input image to be classified,. In other 
words, the goal of the associative mapping system is to 
assess which of the synthetic prototypes is closest to the 
actual image supplied by the camera. This is especially useful 
when the positioning system 'starts blindly' and is supposed 
not to have any a-priori information about the vehicle's 
position, i.e., when there is no valid expectation about the 
camera signal. In this case, a rough position evaluation, 
corresponding to prototype addressing, may aid in using the 
expectation-driven recognition module correctly. 

Synthetic images like the ones shown in Fig. 4 cannot be 
stored directly in the associative memory because the camera 
emulator is unable to assign correct gray levels to such 
images, and because the associative system could not 
conform to the varying degrees of brightness of TV images. 
Therefore, edqes represent the only certain a-priori 
information tto be used, and an edge-extraction fiiter must be 
used before accessing the associative memory. Finally, for 
each image, a blurring process is performed on its edges so 
that information can be distributed in its whole matrix and 
matching probabilty is enhanced. The same procedure is 
used for the image provided by the TV camera to allow a 
coherent comparison. 

The associative approach proves vew efficient, and is faster 
than usual image-analysis techniques. Moreover, the outcome 
of the classlication svstem he. the set of error variances 
associated with the prototypes) allows one to arrange the 
alternative prototypes according to their reliability values, 
thereby facilitating the search process in case of backtraking. 

Table A gives the measured error variance for each test 
image. These results are obtained by storing in the memory a 
set of four synthetic images, very similar to one another and 
then providing, as input to the system, a correspondent set of 
real images. Despite the high similarity among the images of 
the training set , a correct classification has been obtained. 

5. CONCLUSIONS 

A method exploiting cartographic information by fusing it 
with TV-camera data has been presented; the method can be 
used by a vision system for autonomous vehicle driving. 

Data contained in a ground map are first transformed by 

detecting the contour lines; then, characteristic patterns 
(landmarks) that can be obsewed along a vehicle's route, are 
considered. This information is further processed, by means 
of a camera emulator, obtaining several views (viewframes) of 
the map path. A viewframe is a synthetic image with which 
symbolic descriptions of the objects it contains and their 
relations are associated . 

The aim of the vision system is to determine the vehicle 
position (in the ground-map reference system) by associating 
the actual image acquired with a TV camera with one of the 
viewframes. When performed in a symbolic way this operation 
is computationally too heavy, whereas the application of an 
associative methodology can yield better results in a shorter 
time. By using this technique, we obtain a list of the 
viewframes, arranged according to their degres of similarity 
with the test image. Then, the symbolic recognition system 
checks whether the candidate viewframe is adeguately 
supported by the descriptive primitives extracted from the 



actual images. The application of this method allows one to 
obtain an improvement in the symbolic recognition process 
thanks to a fast indexing of the set of prototypes. Future 
developments will include the extension of the combined use 
of associative and symbolic recognition techniques to 
sequences of images, and the implementation of the 
associative system on a parallel architecture to achiwe real- 
time performances. 
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