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ABSTRACT 

In this paper, calibrating a camera refers to the process 
of determining the transformation between a 3D object 
coordinate system and the 2D image coordinate system of 
the camera. Knowing this transformation, 3D position of a 
feature point seen in two cameras can be determined by 
using triangulation. Suppose a distortion-free lens is had, 
this 3D-2D transformation can be well approximated by a 
linear model. Unfortunately, most off-the-shelf lenses have a 
certain amount of distortion. If our goal is to get highly 
accurate 3D measurements, we have to considcr lcns 
distortion in camcra calibration. However, considering lens 
distortion will not only complicate the camcra calibration 
procedure, but also complicate the subsequent on-line 
processing such as feature-point comspondence and camera 
re-calibration. It is hence desirable to avoid considering lens 
distortion whenever the distortion-induced error is tolerable. 
This work investigates the effect of neglecting lens 
distortion, and proposes a simple efficient calibration 
algorithm which can either exclude or include lens distortion 
-- depending on whether one can neglect lens distortion and 
still meet the accuracy requirement. 

I. INTRODUCTION 

To infer 3D objects using two or more images, it is 
essential to know the relationship between the 2D image 
coordinate systcm and the 3D object coordinatc systcm. 
This relationship can be described by the following two 
transformations: 

(i) Pcrspcctive projection of a 3D object point onto a 2D 
image point -- Given an estimate of a 3D object point 
and its error covariance, we can predict its projection 
(mean and covariance) on the 2D image. This is useful 
for reducing the searching space in matching features 
between two images, or for hypothesis verification in 
scene analysis. 

(ii) Back projection of a 2D imagc point to a 3D ray -- 
Given a 2D image point, there is a ray in the 3D space 
that the corresponding 3D object point must lie on. If 
we have two (or more) views available, an estimate of 
the 3D point location can be obtained by using triangula- 
tion. This is useful for inferring 3D information from 
2D image features. 

The above 3D-2D relationship can be specified by a column 
vector p, which contains the geometric camera parameters 

specifying camera orientation and position, focal length, lcns 
distortion, optical axis misalignment, and pixcl size. Deter- 
mining this 3D-2D relationship, or equivalcntly, estimating 
p, is called (geometric) camera calibration. 

The techniques for camera calibration can be classified 
into two categories: one that considers lcns distortion [2] 181 
[9], and one that neglects lens distortion [3] [6] [7]. A typi- 
cal linear technique that does not considcr lcns distortion is 
the one estimating the perspective transformation matrix H 
[7]. The cstimated H can be used directly for forward and 
backward 3D-2D projection. If necessary, given the cstimat- 
ed H,  the geometric camera parameters p can be easily dcter- 
mined [4][5][6]. 

Faig's method [2] is a good reprcsentativc for thosc 
considering lens distortion. For mcthods of this typc, cqua- 
tions are established that relate the camera parameters to the 
3D object coordinates and 2D image coordinates of the cali- 
bration points. Nonlinear optimization techniques is then 
used to search for camera parameters with an objective to 
minimize residual errors of those equations. One disadvan- 
tage of this kind of method is that a good initial guess is re- 
quired to start the nonlinear search. 

A few years ago, Tsai proposed an efficient two-stage 
technique using the "radial alignment constraint" [8]. His 
method involves a direct solution for most of the calibration 
parameters and some iterative solution for the other parame- 
ters. Some drawbacks of Tsai's method are pointed out in 
[9]. Our experimental results in section IV also show that 
Tsai's method can be worse than the simple linear method of 
[7] if lens distortion is relatively small. 

Recently, [9] shows some expcrimcntal results using a 
two-step method. The first step involvcs a closed-form solu- 
tion based on a distortion-free camera model, and the sccond 
step improves the camcra parameters cstimated in the first 
step by taking into account lcns distortion. This method 
overcomes the initial guess problcm in the nonlinear optimi- 
zation, and is more accurate than Tsai's method according to 
our experiments. 

However, considering lens distortion will not only com- 
plicate the camera calibration procedurc, but also complicate 
the subsequent on-line processing such as feature-point 
correspondence (in stereo) and camera re-calibration (in the 
case of having a moving camera). Notice that epipolar line 
is no longer a straight line if lens distortion is taken into ac- 
count. Moreover, when lens distortion is small, if the noise 
in the 2D feature extraction is relatively largc or the number 
of the calibration points is relatively small, the calibration 



results based on distortion camera model can be worse than 
those based on linear camera model. The question is then, 
"when should we consider lens distortion in camera calibra- 
tion?" or "when does it worth all the trouble to consider lens 
distortion?" This work represents an initial effort toward the 
answer of the question. 

Consider the pinhole camera model with lens distortion, 
as shown in Figure 1. Let P be an object point in the 3D 
space, and ro = (x y z)' be its coordinates, in inches, with 
respect to a fixed object coordinate system (OCS). Let the 
camera coordinate system (CCS), also in inches, have its x-y 
plane lying on the front image plane (such that x axis is 
parallel with the horizontal direction of the image, and y axis 
is parallel with the vertical one), and its z axis aligned with 
the optical axis of the lens (see Figure 1). Let rc = 
(xc yc I<)' be the coordinates of the 3D point P with respect 
to the CCS. Suppose there is no lens distortion, the 
corresponding image point of P on the front image plane 
would be Q (see Figure 1). However, due to the effect of 
lens distortion, the actual image point is Q'. Let sl = (u v)' 
denote the 2D coordinates (in pixels), with respect to the 
computer image coordinate system (ICS), of the actual image 
point Q' . 

As shown in Figure 2, the 3D-2D transformation from 
ro to sl can be divided into the following four steps: 

1. Translation and rotation from the OCS to the CCS 

The transformation from ro to r, can be expressed as 

where tilde (-) denotes homogeneous coordinates [I], t 
= (t, t2 t,)' is a translation vector, and R is a 3x3 rotation 
matrix determined by the three Euler angles, Q, 8, yi, ro- 
tating about the z, y, z axes sequentially. 

2. Perspective projection from a 3D object point in the 
CCS to a 2D image point on the front image plane 

Let f be the "effective focal length", and let SF = (uF vF)' 
be the 2D coordinates (in inches) of the undistorted im- 
age point Q lying on the front image plane, i.e.. the x-y 
plane of the CCS. Then, we have 

- 
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Figure 1. Pinhole camera model with lens distortion. 
OCS -- object coordinate system (3D) 
CCS -- camera coordinate system (3D) 
ICS -- computer image coordinate system (2D) 

pixels inches inches inches inches 

Figure 2. Relation between different transformation 
matrices. 

SF= H:?~ with H:= 0 1 0 0 C : -e 1 
3. Lens distortion from Q to Q' 

For practical reasons, we consider only the first term of 
the radial lens distortion, i.e., 

where sPF = (urF vPF)'. In this paper, K has the unit of 
inch-'. 

Using the above notations for camera parameters, $ = 
(tl 12 t3 Q 0 yr f K 6. u,, vo)'. The vertical scaling factor 6, 
is not included here because it is a known parameter when 
we use a solid state camera -- otherwise, only the ratios f/S, 
and t7& can be determined. 

4. Scaling and translation of 2D image coordinates 

The transformation from sIF (in inches) to s1 (in pixels) 
involves (i) scaling from inches to pixels, and (ii) trans- 
lation due to misalignment of the sensor array with the 
optical axis of the lens. Hence, 

Notice that, suppose there is no optical distortion (i.e.. 
K = 0). the relationship between ro and s, can be expressed 
as a linear transformation: 

SI = HFo i.e.. 

H31 H32 H33 H34 1 

SI = T[SF with T[ = 

where H = T[H;T$ and D is identity operator (see Figure 
2). 

In. CAMERA CALIBRATION TECHNIQUES 

where 6, and 6, are the horizontal and vertical pixel 
spacing (inches/pixel), u, and vo are the coordinates (in 
pixels) of the origin of the CCS in the computer image 
coordinate system. 

116, 0 u,, 

0 116, v0 
0 0 1  

First, consider the linear calibration method based on 
distortion-free camera model. The problem is to estimate f3. 
but keep K = 0, given a set of 3D calibration points 
rk = (x, yk 23' and their corresponding 2D image coordinatcs 
s, = (uk vJ'. k = 1. .... N. Instead of estimating P dircctly. 
we first estimate the composite parameters (H,,) in Eq. (5) 

(4) 



using Sutherland's method [7], and then decompose (4,) 
into p. uniquely, with a geometric procedure similar to 
Strat's method [6] (due to the space limitation, please refer 
to chapter 2 of [5] for details.) As long as the amount of 
distortion is reasonably small, the p estimated from the 
above linear method is accurate enough for many applica- 
tions. If the resulted p is not satisfactory, it can be used as 
an initial estimate in the following nonlinear calibration pro- 
cedure. 

The nonlinear calibration procedure searches for the 
estimate of B by minimizing an objective function J(p) with 
respect to B. In this paper, J(P) is chosen to be 

N 
Is,?)(rk;BI) - sp)(%;B31l2 

k=l  
(6) 

s,?)(r,.;BI) is the projection of the 3D point rk on the 
front image plane, and can be obtained by using 
3A3) = H; T: Fk ; 

sP'(sk;fi2) is the corrected (undistorted) image point on 
the front image plane corresponding to the 2D image 
observation sk, and can be obtained by using 

SF) = ( l - K lsPFl2) sflF where S'F = (~F1-l Sk . 

Othcr objective functions can also be chosen. However, the 
J(B) chosen in Eq. (6) is consistent with the error measure 
used for testing calibration accuracy in stereo vision applica- 
tion. Also, when minimizing (6) with quasi-Newton method, 
the iterative estimates are found to converge quite well. 

When the amount of distortion is large, the initial esti- 
mate for fi (with K = 0) obtained from the linear calibration 
procedure can be far away from the true value. which will 
make the subsequent iterative estimation less likely to con- 
verge correctly. By noticing that the distortion is much more 
severe near the image boundary than that in the central 
image part, we can use only the calibration points observed 
in the central part of the image to perform the initial linear 
calibration, while use all the calibration points for the subse- 
quent nonlinear minimization step. This technique is used 
for obtaining bJ shown in the next section. 

IV. EXPERIMENTAL RESULTS 

To evaluate the accuracy of the camera calibration for 
3D vision application, it is necessary to define certain kind 
of error measure. The measure adopted in this paper is the 
3 0  angular error, i.e, the angle *POP' where P is the 3D 
test point. O is the lens center, and OP' is the 3D ray back 
projected from the observed 2D image of P. A 3D angular 
error of 0.015" is roughly equivalent to "1 pan in 4000 
(because tan(0.015O) = 114000). 

Let bEi represent the value of f3 estimated by using the 
linear calibration method described in the last section. Let fiJ 
represent the estimate for p obtained by minimizing I($) in 
(6) with fi, as the initial estimate. Let be the estimate 
obtained by Tsai's method presented in [8]. Figures 3 - 6 
compare the 3D angular errors associated with OH, bJ, and 
&, i.e., the estimates for B obtained with three different cali- 
bration methods -- the first one is based on distortion-free 
model while the other two take into account radial lens dis- 
tortion. The size of the images used in the experiments is 
256x242 pixels. 

Figures 3 - 5 are obtained with synthetic data, so that 
the true camera parameters arc known exactly. Each data 
point in these Figures is the average value from ten random 
trials. In these simulation, we assume the 3D positions of 
the calibration points are known exactly, and the only source 
of measurement noise is the error in estimating the image 
coordinates of the calibration points, i.e., the 2D observation 
noise. The reason for doing so in the simulation is because, 
for our applications, the 3D measurement noise is easicr to 
be controlled such that it has much smaller effect than the 
2D observation noise has. Let a denote the standard devia- 
tion of the 2D observation noise. For Figun: 3, G is chosen 
to be 0.1 pixel, and the true K is -0.3 inch-' which 
corresponds to roughly 4 to 5 pixels distonion near the four 
image comers. However, the distortion at the central part of 
the image is much smaller than one pixel because the distor- 
tion is a cubic function of the radius. The purpose of Figure 
3 is to show how 3D angular error decreases as the number 
of calibration points N increases. Figure 4 shows that as the 
2D observation noise increases, the 3D angular error also 
increases, i.e., the camera calibration accuracy decreases, for 
all the three calibration methods. 

A few interesting results are shown in Figure 5. (i) As 
the amount of distortion (or I K )  gets larger, the accuracy of 
fiH decays rapidly; however. the accuracy of fiJ does not vary 
much. The inaccuracy of b,, at large IKI is due to the incapa- 
bility of modeling distortion. (ii) When the amount of dis- 
tortion is relatively small, say, I K ~  < 0.25, h is worse than 
DM. This must have been owing to the instability caused by 
the extra freedom of estimating K. ( i i i )  The accuracy of 6, is 
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Figure 3. 3D angular error versus the number of cali- 
bration points with a = 0.1 pixel and K = -0.3 inch-'. 
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Figure 4. 3D angular error versus 2D observation 
noise; with N = 60 and K = -0.3 inch-'. 



radial lens distortion coefficient 

Figure 5. 3D angular error versus lens distortion K; 
with N = 60 and a = 0.1 pixel. 

almost always better than that of pH (although some excep 
tions do exist in our extensive simulation). This is quite 
natural since we use 8, as the initial estimate for the non- 
linear minimization of J(0) . (iv) Let Bllo be the estimate 
obtained by using the linear method and using only the cali- 
bration points located in the central imagc area. The radius 
of the central image area, R,, is chosen such that the distor- 
tion incurred in the central area is always smaller than 1 
pixel. From Figure 5, We can see that the accuracy of OH, is 
much better than that of fiH for large I K I  , and is even better 
than that of 8, in general. (Of course, the accuracy measure 
of PI, is obtained by testing only on the test points located 
within the central area.) 

Figure 6 shows the experimental results using real 
images taken by a SONY XC-39 CCD camera at 19 
diffcrent positions. The 3D control points used are the 
centers of 61 circular dots located on two 3D planes. It is 
found that the average 3D angular enur using the linear cali- 
bration method is 0.0149", which is "1 pan in 4000". This 
3D angular error roughly corresponds to 2D image crror of 
0.15 pixels. If we consider lens distortion and include the 
nonlinear minimization step, the average 3D angular enur 
can be reduced to 0.0122". This improvement is much 
smaller than that expected from the simulation. This is 
mainly because that, in real experiments, there is always 
noise in estimating the 2D image coordinates of test points. 
These 2D obsewation noise of test points will make the 
computed inaccuracy measure of $, appear to bc much larger 
than it really is. Another reason for the improvement being 
smallcr is probably because the distortion model is not exact. 
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Figure 6. 3D angular enur versus position of camera 
in real experiment. 

V. CONCLUDING REMARKS 

From the above experiments, we make the following 
observations: 

(i) To increase the calibration accuracy to a certain extent, 
we can either increase the number of the calibration points or 
decrease the 2D observation noise. 

(ii) For small lens distortion, BH is usually good enough for 
3D applications. Unless we can increase the accuracy of 2D 
feature extraction accordingly, it may not worth the efforts to 
increase the calibration accuracy by the nonlinear minimiza- 
tion step. 

(iii) With the modified linear method which uses only the 
central calibration points, we can enjoy the linearity property 
of the camera model without losing too much the calibration 
accuracy. The major sacrifice is that we do not use the 2D 
features outside the central area for 3D inference. (For I K I  = 
0.3, the radius of the central area is about 105 pixels for a 
256 by 242 image.) This small drawback is no problem at all 
for a 3D active vision system. 

(iv) Surprisingly, Tsai's method is not as good as expected. 
This is partly because it does not estimate the image center 
(at the beginning), and partly because it does not use all the 
information contained in the calibration points. 
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