
MVA'SO IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

MULTIRESOLUTION PYRAMID ARCHITECTURES
For

REAL-TIME MOTION ANALYSIS

Peter J. Burt

David Sarnoff Research Center
Subsidiary of SRI International

Princeton NJ, 08543-5300

ABSTRACT
Multiresolution pyramid techniques can improve

the efficiency of basic vision algorithms by orders of
magnitude. They will be key to developing practi-
cal vision systems to perform challenging tasks in real
time. However, these efficiencies cannot be fully real-
ized when pyramid-based algorithms are implemented
on machines with conventional SIMD mesh and pipeline
architectures. We describe a segmented pipeline archi-
tecture that can support pyramid processing. We il-
lustrate this architecture with an application to image
motion analysis for vehicle guidance.

INTRODUCTION
Pyramid techniques have become a standard ele-

ment of algorithms for such computationally demand-
ing vision tasks as stereo and motion analysis. They
provide important mechanisms for achieving efficiency,
and for isolating signals from noise and background
clutter. When implemented in software, on general
purpose computers, these techniques have improved
speed dramatically, often by two, three, or more or-
ders of magnitude.

However the same techniques are not readily trans-
ferred to the parallel computing machines, such as SIMD
mesh and pipeline designs, that are under considera-
tion for real-time vision applications. Difficulties arise
in keeping processing elements busy when sample rates
change within the pyramid, and analysis is restricted
to regions of 'focal attention.'

We are developing a modified pipeline design, the
segmented pipeline, to overcome the limitations of cur-
rent designs [I]. In this paper we review the segmented
pipeline concept, and show its application to image mo-
tion analysis for vehicle guidance.

PYRAMID-BASED ANALYSIS

Image pyramids are commonly used as a basis for
efficient coarse-fine search. Less well know, but equally
important, pyramid techniques have been developed in
recent years for isolating signal components in com-
plex imagery, and for implementing focal analysis tech-
niques. All of these techniques can be implemented
within a common framework to serve image motion
analysis.

Coarse-fine search has been described for motion
analysis by numerous researchers, e.g, [2],[3]. Motion

analysis for a given pair of image frames begins at a
low resolution pyramid level. There an initial rough
estimate of image motion can be obtained at minimal
computational cost because data arrays and frame-to-
frame displacements are small. The estimate is then re-
fined in steps as analysis moves to progressively higher
resolution pyramid levels. The computation cost re-
mains low because these refinements involve only low-
complexity local computations.

The pyramid also provides a powerful means for
separating multiple motion components without ex-
plicit image segmentation. For example, motion tuned
'channels' are obtained by applying motion analysis
separately at each level of the Laplacian pyramid rep-
resentations of an image pair [5] : fast motions are de-
tected at low resolution levels, while slow motions are
detected at high resolution levels. An ability to scp-
arate motions with very similar velocities can be ob-
tained by taking advantage of this selection property
in coarse-fine search [6]. In this way image regions con-
taining multiple superimposed moving patterns, such
as moving shadows or transparent objects, can be an-
alyzed.

Integration pyramids provide a means for system-
atically controlling the size of the local regions in which
individual motion estimates are obtained, as well a s
the image resolutions at which computations are per-
formed. The best choice of region size depends on im-
age content: small windows are required near motion
boundaries, while large windows are best in areas of
uniform motion [7].

Finally, the pyramid provides an ideal framework
for implementing focal analysis strategies that are anal-
ogous to eye movements in humans: details of a scene
are sensed only within a focal region of the scene, while
the scene as a whole is sensed at much reduced reso-
lution [8]. Focal analysis can be implemented as a se-
quence of focal probes, as suggested in Figure 1. Each
probe examines a different region of the scene at a dif-
ferent resolution. In this driving scene, probes at low
resolution are used first to identify the road near the
vehicle, then probes at progressively higher resolution
are used to follow the road into the distance. Other
probes are used to locate and analyze oncoming velli-
cles and road signs. Image data processed in succes-
sive probes is obtained from selected analysis windows
within a pyramid representation of the image, as shown
on the right in Figure 1.

, -

-..
I ?-'-..-<;-- :.-; ''
' " : ,.- ,:
J.. ...

. - - -- -- . ..
(a) (b)

Figure 1. Analysis of a road scene as a se-
quence of focal probes (a) based on data from
a multiresolution image pyramid (b).

In this paper we examine parallel implementations
of an algorithm that incorporates all four of these pyra-
mid techniques. Details of the algorithm are not re-
quired here, but can be found in [7]. Figure 2 illustrates
an application of the algorithm to a vehicle guidance
task. A vision system on board a moving vehicle is
used to detect objects moving in or near a road, such
as the postmen in this example. The system must dis-
criminate between image motion that is due to the
observer's own motion, and that which is due to ob-
ject motion. At the particular point in time shown we
assume the system has selected a region of the scene
for focal analysis that contains the road as it recedes
into the distance, Fig. 2b. Figure 2c shows the dif-
ference between two successive images of the sequence
within this focal region. Image motion is dominated
by camera rotation, as is evident in the significant mis-
alignment in this difference image. Coarse-fine motion
analysis is performed within the focal region to deter-
mine displacement due to camera motion. Successive
images are then aligned based on this estimate, and a
difference image is formed, Fig. 3d. The postman is
now isolated from the background due to his relative
motion.

CURRENT LIMITATIONS
Because pyramid techniques will play an impor-

tant role in real-time applications, it is important that
vision machines support pyramid-based computations
effectively. In particular, the architectures for a real-
time vision system must (a) accommodate a wide varia-
tion in sample densities, (b) accommodate a wide varia-
tion in the size and position of the focal analysis region,
and (c) accommodate rapid changes in these character-
istics in the course of highly dynamic analysis.

In many respects conventional SIMD mesh and
pipeline architectures are well suited for motion anal-
ysis. The operations performed are local and homoge-
neous: computations at a given point are based only
on sample values in a restricted neighborhood of that
point, and the same operations are repeated at each
sample point over extended regions of the image. How-
ever, when multiresolution focal techniques are used,
both the mesh and pipeline designs. If a separate pro-
cessing element is assigned to each image pixel, as in a
'fine grained' SIMD mesh, reductions in sample density
or in the size of the focal analysis region only result in
most processors being left idle. Since active processors
are widely separated, communication between proces-
sors is slow. If a processing element is assigned to a
block of image pixels, as in a 'coarse-grained' mesh,

Figure 2. (a) Postman crossing road. (b) Re-
gion selected for motion analysis. (c) Differ-
ence between successive image frames show-
ing motion due to the camera and postmen.
(d) Difference after detecting and compensat-
ing for surface motion within the analysis re-
gion.

then there is less parallelism but more flexibility for
the system to adapt to changes in sample density. But
restrictions in the focal analysis region still leave many
processors idle.

A pipeline machine has some advantages over a
mesh. It can process subsampled, region-of-interest
data if these data are read selectively from an input
memory buffer: only samples that need to be processed
enter the data stream, and the transmission rate is
matched to the capacity of the processing elements.

Still, if further subsampling or windowing takes place
in the course of analysis, then subsequent processing
elements in the pipeline run below their capacity.

SEGMENTED PIPELINES
To resolve these difficulties we proposed a modi-

fied pipeline system. In this ~egmented pipeline the flow
of data through the processing steps is interrupted pe-
riodically and data are returned to a memory buffer.
Data transfer rates can then be readjusted to compen-
sate for changes in sample densities and the size of the
analysis region.

The computation within a segmented pipeline can
be specified with an image flow diagram. This repre-
sents each processing step with an appropriate symbol
and indicates the paths followed by data as arrows be-
tween symbols, Figure 3.

Each pipeline segment is a simple pipeline. A
pipeline segment consists of an input buffer, a sequence
of processing elements, and an output buffer, as shown
in Figure 3a. Image data are organized into blocks,
each representing an array of image samples. Image
processing is performed as a data block is transferred
from the input buffer, through the processing elements,
into the output buffer. Samples are transferred sequen-
tially, in a prescribed order (e.g., raster scan).

Resampling steps can be included within a pipeline
segment, as shown in Figure 3b. While resampling by
arbitrary factors is possible, a factor of two is most
common and will be assumed here. In this case the
data stream that is output from a down-sampling op-
eration, 1, consists of every other sample and every
other row of the input data stream, while other sam-
ples are discarded. Up-sampling, f , means that a new
sample (with value zero) is inserted between each pair
of input samples and a row of new samples is inserted
between each pair of input rows.

Down-sampling in two dimensions results in a re-
duction in data rate by a factor of f , while upsampling
results in an increase by 4. In the figure, data rates are
indicated as numbers under the transfer arrows. Here
the full data rate is shown as a 'l', while reduced rates
are fractions: f , &, etc.

Down-sampling and up-sampling operations are
shown in these diagrams as distinct processing steps.
In practice such operations are performed in conjunc-
tion with other processing steps and with buffer 110.
Down-sampling is generally performed after a process-
ing step and before data is stored in a memory buffer,
while up-sampling is performed before a processing step
and after data are read from a buffer. Resampling in-
curs no cost or delay.

A windowing operation is performed at a given
pipeline segment when a subarray of data are read from
the input buffer and transferred through the processing
elements. We show this as a shaded rectangle of data
within the buffer symbol, Figure 3c.

EFFICIENCY ANALYSIS
A pipeline computation, and hence a pipeline seg-

ment, may consist of multiple data pathways running

Figure 3a. A basic pipeline segment.

Figure 3b. A pipeline segment with resampling.

Figure 3c. A pipeline segment with windowing

in parallel. A simple case is shown in Figure 4a. Here
a single input path diverges to form two paths, with
identical copies of the source data flowing on both. The
pathways merge at processing element P4. This could
be any image operation that requires two inputs, such
as sample-by-sample addition or multiplication.

Figure 4b shows an alternative implementation of
the same computation as that in Figure 4a, but now
organized as two pipeline segments. Data processed in
the parallel pathways is stored in buffers B2 and B3
after the down-sampling step. These become the input
buffers for the second segment. Note that processing
elements P2 and P 4 run at rate in the single segment
implementation, but at full rate in the two segment
implementation, thus providing a potential for more
efficient use of these processing elements.

Figure 4a. pipeline segment with multiple paths.

Figure 4b. The same computation as two segments.

The efficiency of these two implementations can
be analyzed as shown in Figure 5. Time utilization of
each processing element in the pipeline is shown over
the course of the computation. Assume the initial data
block has unit size, and that the nominal processing
rate of all processing elements is one unit of data per
unit of time. (There are added buffer delays within
individual processing elements required to implement
neighborhood operations, but these are insignificant for
the present analysis.) The computation in the first con-
figuration takes one unit of time, and all four processing
elements are active during this entire period. However,
processing elements P2 and P4 run at only 114 capacity
because they follow the subsampling steps.

(a) (b)
Figure 5. Processor time utilization for the
pipelines in Figures 4a and 4b.

The diagram for the second configuration shows
that two processing elements are busy for one time unit,
then two other processors are busy for 114 time unit.
In this case each processing element runs at full capac-
ity when it is busy. The overall computation takes 25%
longer than the computation in the single segment con-
figuration. However, processing resources can be more
efficiently used in this case, by assigning individual el-
ements to other processing tasks when they are not
required for the computation shown.

We define efficiency as the ratio of the processing
performed by all the processing elements over the time
course of the computation to the processing that could
have been performed by these same elements if they ran
at full capacity throughout the period they are assigned
to the computations. By this definition the efficiency of
the first configuration is .625 while that of the second
is 1. The benefit of the segmented implementation are
modest here, but can be very significant in other, more
complex computations.

APPLICATIONS TO MOTION ANALYSIS

The motion analysis technique outlined, and il-
lustrated in Figure 2, can be implemented within a
segmented pipeline. The basic structure is shown in
Figure 6.

Motion analysis is performed on two image frames,
A and B. The algorithm estimates the motion, or dis-
placement, from A to B in terms of parameters such
as translation, rotation, and dilation. To achieve pre-
cise results, the basic computation shown is repeated
scveral times for the given pair of images. With each
iteration, analysis moves to a higher resolution pyra-
mid level, and to a smaller analysis window. In each
iteration an array of local correlation values is com-
puted within the pipeline machine. Then parameters
of motion are obtained by fitting a motion model to
the correlation data. This computation is performed
by an external microprocessor.

The computation begins with image A warped to-
wards image B in accordance with a priori motion es-
timate Vo. This reduces the frame-to-frame displace-
ment that must be estimated by the computation, and
hence increases its accuracy. Next a Gaussian pyramid
is constructed to level 2 for both the warped A and the
original B. The image Az is then shifted relative to

Bz by -1, 0, and 1 samples in x, and the two images
are multiplied, sample-by-sample, to form three prod-
uct images M-, M O , M+. (In practice A2 is shifted
by -1, 0 and 1 in both x and y, to form nine product
images.) Next, an 'integration' pyramid is constructed
for each product image to level 4. The resulting sam-
ples represent local cross-correlation values between the
reduced resolution image arrays, A2 and B2, each de-
fined within a gaussian weighted neighborhood. These
correlation values are then accessed by the external mi-
croprocessor for motion estimation.

The motion estimate Vl of Iteration 1 is used in
the second iteration to specify the warp for image A.
The size of the focal analysis window is reduced by 2
in both x and y with each new iteration, and analysis
is moved to the next higher resolution pyramid level.

The size of each rectangle in this image flow di-
agram indicates the total data in the corresponding
array. A rectangle with a solid outline signifies that
the image array resides in a memory buffer, while a
dashed outline signifies that the array is an intermedi-
ate result of a pipeline process that is never stored in
a buffer, but that is shown for clarity.

The overall pipeline computation is divided into
distinct segments, S1, S2, ..., S8, as indicated in the
figure. Note that segments S1 and S2 are on different
data paths than S 3 and 5'4, so can be run in parallel.
Similarly, S6, S7 and S8 can be run in parallel. Seg-
ment S5 is particularly interesting as it includes mdti-
ple data paths that diverge then merge. All processing
in S 5 must be run synchronously, in parallel.

PERFORMANCE ANALYSIS

A time/utilization diagram for the motion com-
putation shown in Figure 7. Three iterations of the
computation are shown. With each iteration it is as-
sumed that the analysis window is reduced in size by
a factor of four, and analysis is moved to a higher res-
olution pyramid level. This means the initial pyramid
construction steps, P2 and P4, are skipped in Iteration
2, and P2, P3, P4 and P5 are skipped in Iteration 3.
(P6, P7 and P8 are not included in the analysis be-
cause they only perform a shift by 1 sample, a function
that, in practice, would be incorporated with another
processing step, such as multiplication, P9, PI0 and
P11).

In this case the total time for the standard pipeline
would be 3T while that for the segmented pipeline is
1.73T. The efficiency of the standard pipeline for the
three iterations would be .28, .098, and .048, rcspec-
tively, or .I43 overall. The efficiency of the seg~nented
system is 1.

SUMMARY AND DISCUSSION

Pyramid techniques will be an essential past of
practical vision systems that perform challenging tasks
in real time. But to take advantage of these techniques
a system must be able to accommodate large changes
in data load from processing step to processing step,
and must accommodate moment-by-moment changes
in the computations performed.

Figure 6. Motion computation diagram.

, # , , We have described a segmented pipeline architec- - - -
ture that can maintain efficiency in the presence of such

P I changes by decomposing a complex pipeline computa-
tion into a set of simple pipelines, each with roughly

P2 constant data load. Processing elements are shifted be-
tween pipeline segments dynamically, in the course of

, ,
computat ions.

P3 A machine to implement such segmented pipeline
, , processing must be capable of rapidly reconfiguring its

set of processing elements in order to assemble pipeline
segments as data flow through the computation steps.
In addition, it must have a supervisor process to assign
resources to segments and coordinate the flow of data
blocks through these segments as they are assembled.
These aspects of the design are beyond the scope of the

8 : M O D ,
0" " " : a 8

present paper.

Figure 7. Time utilization for three iterations
of the corase-fine, focal, motion analysis pro-
cedure.

1 I

REFERENCES
[I] P. J. Burt and G. van der Wal, "An architecture

for multiresolution, focal, image analysis," Proc.
10 Intr. Conf. on Pattern Recognition, pp. 305-
311, 1990.

[2] P. Anandan, " A unified perspective on compu-
tational techniques for the measurement of visual
motion," First Intr. Conf. on Computer Vision,
pp. 219-230, 1987.

[3] J. R. Bergen and E. H. Adelson, "Hierarchical
computationally efficient motion estimation," J.
Opt. Soc. Am., Vol. 4 , pp. 35, 1987.

[4] P. J. Burt, J. R. Bergen, R. Hingorani, S. Peleg,
and P. Anandan, "Dynamic analysis of image mo-
tion for vehicle guidance," Proc. IEEE Intr. Conf.
on Intell. Motion Control, pp. IP-75-82, 1090.

[5] P. J. Burt, C. Yen, and X. Xu, "Multiresolution
flow-through motion analysis," Proc. IEEE Com-
puter Vision and Pattern Recognition Conf., pp.
246-252, 1983.

[6] S. Peleg, J. Bergen, P. J. Burt, and R. Hingorani,
"Computing two motions from three frames," Intr.
Conf. on Computer Vision, 1990.

(71 P. J. Burt, J. R. Bergen, R. Hingorani, R. Kol-
czynski, W. A. Lee, A. Leung, J. Lubin, and H.
Shvaytser, "Object tracking with a moving cam-
era, an application of dynamic motion analysis,"
IEEE Workshop on V i s ~ ~ a l Motion, pp. 2-12, 1989.

[8] P. J. Burt, "Smart sensing within a pyramid vision
machine," Proceedings of the IEEE, Vol. 76, pp.
1006-1015, 1988.

0

PI 6 0 0 0
8 8 8 ,

0 " ' I , ,
8 8

