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Abstract

In the last decade many architectures for low-level image
processing were developed. But simultaneously the image
processing tasks were growing and changing, resulting in a
different set of basic operations than was needed ten years
ago. An attempt is made to classify the existing and
proposed architectures over the past ten years followed by
the results of a theoretical comparison on three of the main
groups of architectures, the pipelines, the processor arrays
and the linear processor arrays. One of the conclusions is
that recursive neighbourhood operations appear to be an
efficient way to implement global operations and object
operations. But is there support from the architectures?
Another conclusion is that queue or bucket updating is an
extremely efficient way to process pixels, especially when
many elements have to be processed as in 3D image
processing. With the amount of elements to process in a 3D
image, the idea of 'one pixel or voxel - one processing
element' has to be abandoned as hardly reachable with the
current technology. 'Processing only the pixels that change'
points in the direction of processing pixels or voxels only
on fronts. These kind of operations, such as labelling,
skeletonization, distance transform and region growing are
characterized by the name: "Wave Front Processing'. The
support from architectures needed for this type of
processing is indicated.

1. Introduction.

The demands for high speed image processing capabilities
keep both rising and changing. Satellite data, printed circuit
board inspection and VLSI mask checking demand larger
image sizes, about 4096x4096 and more, while 3D image
analysis requires the processing of images with typical sizes
of 256 x 256 x 64 voxels. Industrial inspection, robot
vision and interactive biomedical image processing are
based on more complex algorithms nowadays while the
pressure for equal or faster system response times remains.
In the past decade many SMID architectures were designed
and realized mainly to serve the field of low-level image
processing. Characteristic architectures were the Square
Processor Array (SPA) or mesh, the Linear Processor
Array (LPA) or scanning array, the Pipeline (PL) and the
Pyramid (PYR).

Due to the massive parallel character of the low-level image
processing, solutions were often based either on many
small Processing Elements (PEs) constituting a 1 bit
Cellular Logic Machine (Lougheed and McCubbrey
1980a/b, Duff 1982, Tanimoto 1986) or based on few more
powerful DSP like PEs (Lindskog 1988).

As an outcome of the research in image processing of this
past decade, several software packages grew mature as a
tool for problem analyzing and many manufacturers
brought their image processing systems on the market,
mostly based on a pipeline architecture, though other
promising attempts were based on a Linear Processor Array
architecture, such as the AIS-5000 (Wilson 1988).
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2. Image processing tasks.

As we look at tasks that are performed in image processing
nowadays a few profiles can be sketched, without
pretending to be exhaustive:

2.1 Industrial inspection and robotics:

Industrial inspection and robotics is nowadays a main
application field of the classical 2D image processing
sequence,

Image acquisition in this field involves both CCD video
cameras and line-scan cameras. Gray-value filtering is
avoided by solving the illumination problem and
segmentation is typically done by thresholding followed by
post-processing mostly in the form of morphologic
operations. Measurements are often length of lines,
sometimes surface, perimeter and circularity. Pattern
recognition is mostly done feature based. In this field most
of the commercial real-time image processing systems find
their application. E.g. inspection by placement of SMD
devices on printed circuit boards, inspection in robot
assembly sequences. An example of an an advanced
processing sequence in this field would be the recognition
of 3D objects from a 2D image based on a learning set of
images (Bart et al.1990): Sobel edge detection, isodata
thresholding, hilditch skeletonization, line following, graph
building, graph improvement, segment selection,
classification with a nearest neighbour approach and
learning set building, distance measure optimization,
learning set optimization, matching threshold determination.

2.5D Image processing for industrial inspection will mostly
be based on special sensor systems using laser triangulation
(Stuivinga et al. 1989; Kanade 1989). Due to the short
distances and acquired accuracy the label 'depth imaging' or
'2.5D imaging' is more  suitable than 'range imaging'.
Typical values are 800x800x800 mm - 8, 8, 8 mm or 50
x50x50 mm - 0.05, 0.05, 0.05 mm for field of view and
accuracy. Laser radar range sensors are probably not
suitable in this application field. Examples in the ficld of
inspection: pallet loading, train rail inspection, SMD
inspection and the electrical razer blade inspection.
Examples in the field of robotics are: recognition and the
determination of 3D Position and Orientation (3DPO) of
objects. Image acquisition is either performed using a
scanning laser point-beam, a scanning laser slit-beam or
using structured light (Inokuchi et al.1984,1986; Vuylsteke
and Qosterlinck 1987; Jonker et al. 1990). Note that
conveyor belts, robots and trains are scanning devices and
can be used to omit one of the dimensions X or Y. An
example of a processing sequence in this field would be:
Range image acquisition using structured light,
triangulation (transforming camera co-ordinates (u,v) onto
world coordinates (x,y,z). Note that the mapping function
should be found by a -preferably automatic- calibration
procedure. Image segmentation by first and second order



surface fitting, followed by analytically intersecting the
surfaces to obtain the edges. (Besl and Jain 1986,1988;
Schmidt 1989).

Object recognition and the determination of the 3DPO of
objects is also possible using a combined stereo vision /
graph marching approach. Note that in this approach more
than 2 cameras can be used. A typical processing sequence
of such a system would be the recognition of objects using
inexact matching of graphs (Buurman and Duin 1989). For
two cameras in parallel: Edge detection, line following,
graph building, graph improvement. Then: inexact graph-
matching, object selection and measurements on objects.
Note that a certain accuracy must be reached in the
segmentation phase in order to have a reasonable result for
the 3DPO calculation. The segmentation is based on: 17 x
17 binomial filter with st.dev. 2, 5x5 Dynamic Contour
filter based on a none linear laplace - zero crossing method
(Verbeek et al. 1988), skeletonization and chewing small
skeleton ends. When performing a 2D-2D march first, a 3D
graph is obtained which can be matched with a 3D wire
frame obtained from learning or from a CAD database.
Matching the separate 2D images directly onto the 3D wire
frame is also possible.

2.2 Biomedical Image Processing

Biomedical Image Processing is often closely connected
with 3D image analysis. Moreover, it is dominated, in
contrast with the industrial image processing, by the effect
of geometrical distortion of the image due to the sensors
and by severe noise due to low intensities. Typical sensor
systems are CAT scanners, NMR scanners, seismic
tomography and confocal or ordinary microscopy.
Measurements, display techniques and user interaction are
important items for the medical oriented users.

The acquisition is mostly obtained by a scanning device,
which can introduce the problem of distortions induced by
movement above the distortions of lenses. Exact
reconstruction requires mostly operations in the frequency
domain. A Problem in 3D image processing is the non-
uniform resolution in x,y and z direction of the image,
typically 256 x 256 x 64 voxels, which urges the need for
either resampling or the modification of existing routines
for the non-uniform resolution. An example of a processing
sequence in the field of cytometry would be the
Reconstruction of Periodic Signals based on FFT & IFFT
(Young 1988,1989) followed by Thresholding, 3D-
erosions & dilations, 3D-Object labeling to find the cell
nuclei, thresholding, 3D-erosions & dilations, 3D-Object
labeling to find the centromeres of the nuclei, 3D-distance
transform (a modified approach of: Danielsson (1980)) to
get the distance of the centromeres to the borders of the
nuclei, exact calculation of the centre-of-mass, surface area,
volume, texture, shape and total intensity of each object
(ANA-3D benchmark: Young 1990). In chromosome
projects, the straightening of bended chromosomes is a hot
topic (e.g. based on a modified approach of: Wall and
Danielsson (1984) ).

3. Image processing operations.

Image processing tasks are built from image processing
operations. Figure 1 shows the classical distinction made in
low level, intermediate level and high level image
processing operations (Danielsson and Levialdi 1981,
Fountain 1986).

Low-Level Toolbox High-Level Control
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Figure 1. Classical distinction in levels of image
processing.
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3.1 Low level operations.

Given: source image X, destination image Y, value or
value-vector V, structuring element (neighbourhood) S and
p, q the position vectors of pixels within X, Y, or §,

the following operations are considered to be low-level
image operations:

Point Operation (PO). Every pixel Yp in the
destination image is a function f of the pixel Xp in the
source image.

Object Operation (OO). Every pixel Yp in the
destination image is a function f of the pixels Xp-g in the
source image (where q are all positions within the
object).

Local Neighbourhood Operation (LNO). Every
pixel Yp in the destination image is a function f of the
pixels Xp-g in the source image (where a are all
positions within the structuring element or
neighbourhood S)

Recursive Neighbourhood Operation (RNO).
Every pixel Yp in the destination image is a function f of
both the pixels Xp-q (the normal pixels) in the source
image and the pixels Yp-q (the recursive pixels) in the
destination image (where q are all positions within the
structuring element or neighbourhood S). Note that the
position Yg = 0 is called the central pixel, which mostly
does not belong to the set of recursive pixels Yp-q.
Global Operation (GlO). Every pixel Yp in the
destination image is a function f of the pixels Xp-q in the
source image (where q belongs to the complete image
X), and of the absolute and relative positions p and g it
selves.

Geometric Operation (GeO). Every pixel Yp in the
destination image is a function f of the pixels Xg(p)-g in
the source image (where ¢ belongs to the structuring
element S(p), which may be depending on Yp , and g is
a function on the source coordinate p ), and of the
absolute and relative positions p and q it selves.
Statistical Operation (SO). The value (vector) V is
a function f of all pixels Xp in the source image (where p
belongs to the complete image).

3.2 Low level and intermediate level tasks.

Table 1 shows image processing tasks which were defined
at the Tanque Verde Benchmark Suite and the DARPA
workshop (Rosenfeld 1987; Weems et al. 1989a). In the
table it is indicated which tasks are low-level according to
the definition and which are not (Komen 1990a). The tasks
indicated by 'y/n?' could not easily be classified as
belonging to field low-level image processing. Some
algorithms performing the task might, some might not.



Generalized Abingdon cross yes

Tanque Verde task:  low-level: DARPA task: low level:
Edge finding yes 11*11 Gaussian conv.ff of 512%512*8 bit image yes
Line finding yes Detection of zero crossing in a diff. of Gaus. im. y/n?
Corner finding yes Construct and output border pixel list y/m?
Noise removal yes Label connected components in a binary image  yes
Hough transform of a binary image yes
Segmentation y/n? Convex hull of 1000 points in a 2D R (real space) y/n?
Line parameter extraction  no Voronoi diagram of 1000 points in 2D R no
Deblurring yes Minimal spanning tree across 1000 points in 2D R no
Classification no Visibility of vertices for 1000 trianglesin 3DR  no
Printed circuit inspection  no  Minimum cost path through a weighted graph of
Stereo image matching no 1000 nodes of order 100 no
Camera motion estimation no  Find all isomorphisms of a 100 node graph in a
Shape identification no 1000 node graph no

Table 1. Tanque Verde and DARPA tasks

Some intermediate conclusions can be drawn:
From the task profiles sketched above and from the
operations in table 1 it becomes clear that:

Most image processing applications demand a mixture of
low-level and intermediate level image processing
operations and that clear low-level tasks are seldom. Clearly
classical 2D low-level algorithms are often heavily mixed
with intermediate level algorithms, for instance to find
regions of interest or to segment in a multi accuracy
approach (Gerbrands 1988).

2.5D image processing involves triangulation and may use

geometric operations. 3D image processing involves exact
reconstruction of the original image and accurate
measurements. Floating point support for these tasks is
desirable.

3D image processing involves the processing of many more
elements than 2D or 2.5D. Probably the idea to attach a PE
to each pixel or voxel must be abandoned, at least when
using conventional digital (VLSI) technics.

Furthermore, as supercomputers become within everyone's
reach and clever sequential programming remains a skill of
many scientists, the challenge of programming an odd
machine, while not having the freedom and services a
sequential architecture offers, is often minimal (Groen et al.
1988). Random access to each single pixel and the
possibility to set up any data-structure is usually desired.
The competition of a super-workstation is high.

A last observation is that systems for a specific set of tasks
are emerging. Systems such as industrial inspection
systems, robot vision systems and interactive biomedical
workstations. As a result of this trend, attention switches
towards the construction of intelligent controllers operating
on a toolbox of image processing routines. The decision
which routine to use, which parameters to choose and in
which sequence the routines are used is made by the
controller that often is based on expert knowledge (Ozaki et
al.1988, Cheng 1990). Such a controller is able to start up
competing procedures, weighting the results, or combining
evidence. Which means that the execution of whole sub-
tasks can be performed in parallel.

Hence, rather than making a distinction in low, intermediate
and high level image processing a distinction in a (low-
level) image processing toolbox, possibly running on a
dedicated architecture and a (high level) task dependent
control system running on a workstation seems to be more
appropriate today. It will be clear that novel architectures
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should be able to support the implementation of this entire
toolbox and if this novel machine is not programmable in a
common high level language it has little chance tot get
adopted.This will probably mean that the PEs need to be
more powerful and that the architecture has to be adopted to
the new set of tasks.

4. A classification of architectures.

A discussion on image processing architectures capable to
support such a toolbox requires insight into the principles
of architectures. Architectures are best distinguished on the
basis of their features.

4.1 Parallelism.

One of the ways to classify architectures is to specify their
spatial or temporal parallel capabilities, often referred to as
parallelism and pipelining. We can distinguish:

1. Operation parallelism (Po): The number of different
operations that can be executed in parallel, in spatial or
temporal sense.

. Spatial parallelism (Ps): The number of different pixels
of an image that can be processed in parallel.

. Neighbourhood connectivity (Cn) and Recursive
neighbourhood connectivity (Cr): The number of direct
connections to adjacent PEs that can in principle be used
for (recursive) neighbourhood operations.

. Neighbourhood parallelism (Pn) and Recursive
neighbourhood parallelism (Pr): The number of pixels
of a (recursive) neighbourhood that actually processed
in parallel in one clock cycle.

. Pixel-bit parallelism (Pp): The ability to operate in
parallel on a number of bits per pixel.

4.2 Memory interface.

Another way to classify architectures is on basis of the way
they handle their PE-memory connection and data structures
possibilities. Normally in image processing architectures
the data structures are fixed: two dimensional integer arrays
contain the images. Sometimes provisions have been made
to store other types of data such as histograms, sometimes
the image data structure is used to store other data.

Mostly the image processing systems have no single shared
memory, but it is distributed over the PEs and so is the
image. (though sometimes for 1/O special provisions are
made). For geometrical operations the knowledge of its
own address is very convenient for a PE. Since
neighbourhood operations form a large part of the



operations, most image processing systems let their PEs
transfer their data through a network. This network reflects
the neighbourhood connectivity of the PEs.

4.3 Data network topology.

The data network topology of an architecture determines
how many steps are necessary to transport data from one
PE to any other PE in the machine. Properties of data
interconnection schemes are analyzed by Forshaw
(Forshaw 1987). Some topologies are: Star or bus,
Pipeline, Ring, Torus, Linear array, Mesh, Tree, Pyramid,
Binary N-cube, NlogN reconfiguring network, Fully
interconnected (Uhr 1988).

4.4 Levels of local autonomy.

Classification can also be performed the level of local
autonomy in between SIMD and MIMD.The following
types of local autonomy are suggested by Fountain and
others (Lindskog 1988; Cypher and Sanz 1989):

* Local activity control (Act). A mask bit in the PE
indicates whether the PE may "join" the calculations or
not.

Local data addressing control (Adr). The address of the
source and/or destination data address can be locally
determined. This is usually done by allowing local data
from a PE to serve as index in a global provided base
address.

Local function control (Fie). The local data (or part of it)
is used to select the function which is executed in a PE.
Local connectivity control (Cnc). The way in which a PE
connects to its neighbouring PEs can be locally
controlled.

Local algorithm control (Alg). In this level of autonomy,
each PE can be loaded with a different program, but the
sequencing 1s still global. Pipelines always have local
algorithm control.

Local sequencing control (Seq). On top of the local
algorithm control, the sequencing of the programs in a
PE can also be locally done. The PEs are no longer
synchronously connected, so that handshaking is
necessary.

Local partitioning control (Prt). The PEs are given the
capability to partition their programs (parts of them) over
other PEs.

4.5 Instruction stream handling.

Mostly no attention is paid on the instruction stream
handling of the parallel machine, though for some machines
the instruction stream might form a problem. E.g. meshes
with usually simple PEs and not able to store their
programs might have problems with the feed of
instructions.Sometimes parts of the data network are used
to transfer instructions.

4.6 Architectural groups.
Low-level architectures can be grouped in:

1. Pyramids (PYRs).

2. Square Processor Arrays (SPAs).
3. Linear Processor Arrays (LPAs).
4. Pipelines (PLs).

A Pyramid (PYR) is a stack of two dimensional square
arrays of Processing Elements. Each PE has connections to
father(s) (mostly 1), in plane neighbours (mostly 8) and a
number of sons (mostly 4). Simulating an SIMD Pyramid
on the CLIP4, Teeuw concluded that simulation of a
pyramidal data-structure in the memory of a small processor
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array is a possibility to increase the processing power of the
array. And that the efficiency of a full size hardware
pyramid is decreased by the fact that this pyramid consists
of many processing elements that are idling during a large
part of the algorithm execution. Because the advantageous
features of a pyramid are only effective for a subset of the
set of image processing tasks and simulated pyramids seem
to be more effective than hardware pyramids, Teeuw
concluded that it may be better to simulate a pyramid on a
small processor array than to actually build one (Teeuw and
Duin 1989) .

A Square Processor Array (SPA) is an array of PEs
connected in a 2D grid. Note that the number of neighbours
that can be reached directly (the neighbourhood
connectivity) is not always the same as the neighbourhood
parallelism. Some arrays allow direct access to 8
neighbours, but only one or two at a time can be used in
calculations. Each PE contains its cwn local memory to
store the image pixel value corresponding to its position in
the array. If a large array is built, the PEs will in general be
designed with less possibilities than the PEs of a small
array. No SPAs for image processing with fully
programmable PEs have come to our attention.

With a full-array, the image is as large as the SPA. Due to
the large number of PEs needed for increasing image sizes,
this seems only suited for optical arrays such as the DOCIP
(Huang et al. 1989). Current arrays have sizes from 8*8 to
128*128, though larger sizes may be assembled. A
Processor Mapping Function (PMF) is used to distribute
the image points over the PEs. A PMF shows in which
memory plane m and in which PE at position (x,y) of the
SPA the image point (i,j) is stored, the usual PMFs are
labelled: full size, window mapping and crinkle mapping.
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Figure 2. Crinkle mapping and window
mapping on a SPA

With crinkle mapping, every PE contains a consecutive part
of the image. This means that the points which are
neighbours in the original image will in general not be
neighbouring points in the crinkle-mapped image. Crinkle-
mapped images may therefore only be processed with a
neighbourhood parallelism of 1. Because of the fact that
sub-sampled versions of the image are stored, crinkle
mapping may be used to do multi-scale image processing or
to simulate an SIMD pyramid (Teeuw and Duin 1989;
Komen and Duin 1990).

For window mapping, the SPA is loaded with image
windows (pieces) of size V(P)*V(P). Although every
window can be processed individually, hardware or
software should provide the values of the neighbours which
are across the window borders. Several methods exist to
solve this 'edge-problem’. For instruction level processing
(all image points are treated for one instruction, then for the
next) the most promising methods appear to be Edge Store
Scanning (ESS) or Half Scan Addressing (HSA) (Fountain
1987; Buurman and Duin 1988). SPAs are seldom
equipped with special edge hardware (Fountain 1987).

A Linear Processor Array (LPA) has a one
dimensionally connected set of P processing elements (PEs)
to process an NxN image. If the image size N equals the
number of available PEs P, then every PE processes one



column. Otherwise, a processor mapping function (PMF)
determines which image point is processed by which PE.
The two PMFs used for an SPA -crinkle mapping and
window mapping- are also used with LPAs. The AIS-5000
uses window mapping, and the PICAP3 uses crinkle
mapping (Wilson 1988; Lindskog 1988). A third PMF in
use, 1s the helicoidal mapping for the SYMPATI-2 (Juvin et
al, 1988). This mapping makes it possible to scan the array
both horizontally as well as vertically across the image.
From the scanning point of view, PEs with a
neighbourhood parallelism greater than one (the AIS for
instance has a neighbourhood parallelism of five) will
preferably use window-mapping, while other PEs may use
crinkle mapping if scanning is only needed in one direction,
or may use helicoidal mapping if scanning should be
possible in both horizontal and vertical directions. When an
LPA uses window mapping, hardware or software should
provide for the values of the neighbours which are across
the window borders. An LPA has a strong advantage here
over an SPA, as a simple hardware scheme allows a
scanning technique which does not give any overhead
(Wilson 1989a)
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Figure 3. Crinkle mapping, window mapping
and helicoidal mapping on a LPA.

In a PipeLine (PL) of processors, there are P PEs
performing a number of operations in parallel, and working
on a sequence of pixels from an NxN image. Image data
comes from a memory or from an input device like a frame
grabber which gives a sequential flow of pixels. This data
is fed into the first PE, processed by it, the result is fed into
the next PE and so on.The result after P PEs can be
displayed or stored again in memory. The speed of the PEs
should be equal for synchronization, but the PEs
themselves do not have to be identical. When a PL
incorporates different PEs it should be reconfigurable, so
that an optimal path through the PEs can be made. If a PL
consists of identical PEs, these should be programmable,

such that a set of operations can be performed in the right
order. Research has been done to find out what a general
purpose bit-serial PE for low-level image processing should
look like. By studying the nature of low-level image
processing operations, it is noted that they can in principle
be build up by bit-serial local neighbourhood operations
(Duin and Komen 1989). These operations can be
performed by PEs with the following connections:

« Two image inputs, so dyadic operations can be done.
The local neighbourhood of one of the image inputs, so
that local neighbourhood operations can be done
directly, and larger neighbourhoods (up to global
operations) can be treated by using the local
neighbourhood operations as a basis.

A carry in- and output, so that grey value images can be
processed.

At least one image output to be fed into the next PE of
the pipeline.

The PEs may be combined to extend the operation
parallelism, by putting one after the other, but also to
extend the pixel parallelism. Such an array of pipelined PEs
may process longer algorithms by using frame
recirculation, and a carry memory may be used to store
intermediate carry results, so that it is even possible to do
high precision image processing at the cost of decreased
speed (Jonker et al. 1989).

5. A comparison of architectures.

The following chapter is based on a theoretical comparison
of low-level architectures (Komen 1990a). The strategy
taken by Komen for the comparison can be outlined as:

"Look at the speed, efficiency, flexibility (concemning image
size, neighbourhood size and data 1/0), and
programmability of different architecture groups (SPA,
LPA and PL) and for different operation groups (PO, LNO,
00, RNO, GIO, GeO, SO)"

5.1 Investigated machines.

The research was based on the architectures of the
following machines:

Existing low-level IP architectures
Name: Streams: Autonomy: Topology: PO: PS: PN: CN: PR: CR: PP: Group
ILLIACIII SIMD no mesh 1 32¢*32 8 8 0 0 | SPA
DAP-610 SIMD no mesh 1 &4*64 1 B 0 0 1 SPA
MPP SIMD no mesh 1 128*128 1 4 0 0 1 SPA
CLIP4 SIMD no mesh 1 128*128 8 8 8 8 1 SPA
GAPP SIMD  Act mesh 1 24%24 2 4 0 0 1 SPA
CAAPP SIMD  Act,Cnc  mesh 1 512*512 2 4 0 0 1 SPA
AIS-5000 SIMD no line 1 1024 5 3N: 1 1 1 LPA
PICAP3 SIMD  Act AdrFie line | 1 3N 1 B 32FP LPA
WARP MIMD  all line 10 1 1 1 1 1 32FP PL
Cywo-HSS MISD  Alg line 88 1 9 9 0 0 lor8 PL
DIP MISD no line 5 1 9/1 9/9 4/0 4/0 1/18 FP PL
CLO-VLSI SIMD  Alg line 12 1 9 9 0 0 1 PL
Proposed low-level IP architectures

Name: Streams: Autonomy: Topology: PO: PS :* PN: CN: PR: CR: PP: Group:
BASE SIMD  no mesh 1 8*8 8 8 8 8 1 SPA
GRID SIMD  no mesh 1 64*64 1 8 0 0 1 SPA
MMB SIMD  no mesh 1 - - - - - 1 SPA
PTA SIMD  Con torus 1 - - - - 1 SPA
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DOCIP SIMD  no mesh 1 full any any 0 0 1 SPA
SLAP SIMD  Adr line 1 1024 1 IN 1 1 8.20 LPA
CLIP7 SIMD  Adr,Act line 1 256 1 N 1 8.16 LPA
SYMPATI-2 SIMD  no line 1 256 1 IN 1 3 8 LPA
PIPE MISD  Fie,Pr line >1 1 9 9 1 1 1 PL
MITE MISD  Pr line >1 1 9 9 1 1 1 PL
CLPE-VLSI SIMD Pr line >1 1 9 9 - 4 1 PL
PAPIA MSIMD no pyramid 1 - 5 13 0 0 1 PYR
IMPP/TIP4 SIMD  Adr data >1 >1 1 1 1 1 16 -
* intended size; N = size of the image being processed; - = Not Applicable

Table 2. Compared architectures.

In the theoretical comparison between the SPA, LPA and
PL for local neighbourhood operations, the following
assumpnons were made:
All processing elements are of equal complexity and
functionality.

« The clock speed is the same for all architectures.

+ The minimum overhead factors as found in existing
machines will be used for all three architecture groups.

+ No extra time for down-loading programs is taken into
account, as this is assumed to take place concurrently
with processing.

+ The data I/O mechanisms which are generally found for
the architecture groups will be taken. This means: raster
scan data 1/O for the PL and the LPA, and column
parallel data I/O for the SPA.

+ It is assumed that the number of PEs used in the SPA,
LPA or PL is the same.

» The power of the individual PEs used in the SPA, LPA
and PL is the same. This assumption is in close
connection with the previous one. If more PEs for the
SPA are allowed, then the power of each PE will be
designed to be less,

5.2 Results of the comparison.
Conclusions of the comparison are:

The actually encountered data input speed is the fastest
for the LPA that uses row parallel data input and quite good
for the PL due to its overlapping processing and I/O. Some
of the SPAs today use column parallel data I/O, and some
use raster scan data I/O. Hence an in-between score for
SPAs.

The image size flexibility from the PL is traded for low
programmability. On the other hand, the SPA and LPA
trade enhanced programmability for low image size
flexibility. This is in agreement with the difference in
temporal- and spatial parallelism offered by these
architectures. The image size flexibility of the SPA may be
less if it does not have facilities to handle images larger than
its array size.

Bit serial SPAs and LPAs offer the largest flexibility in
pixel size. A bit serial PL needs to be equipped with a lot
of special hardware to offer any flexibility in pixel depth.
Also, processing multiple bit images requires the bit serial
pipeline to recirculate through a frame buffer. When all
three architecture types are equipped with the same grey
value ALU, then their pixel size flexibility is the same.

Concerning the neighbourhood -size and -shape
flexibility, the LPA scores best due to its large
neighbourhood connectivity. An SPA which uses crinkle
mapped image storage may also be reasonable.

Point and local neighbourhood operations show no
difference in performance. This is due to the fact that
similar PEs are assumed in the comparison.

For object, global and geometric operations, data
may have to be transported over longer distances at the
highest possible speed, possibly in an anisotropic way. In
such cases, the LPA performs best, followed by the SPA
and PL. This is due to the large neighbourhood connectivity
and the local addressing autonomy possibility of the LPA.
At this point it may be argued, that the SPA can perform as
good as the LPA when the images are stored crinkle-wise in
the local memory of the SPA. The SPA would then also
have extended neighbourhood connectivity. However, the
gain in nelghbourhood g_o_n_u_e_c_[m_[_g for the SPA with
crinkle-wise mapping is accompanied by a loss in
neighbourhood parallelism. This is because the neighbours
of one image point may have been stored in the same PE for
this mapping technique. These can not be fetched in
parallel. The LPA does not loose neighbourhood
parallelism due to the fact that its neighbourhood
connectivity is large. SPAs can be enhanced with local
connection autonomy, so that their performance increases,
PLs cannot be enhanced in any way for these type of
operations. They have their concurrency in the instruction
stream, not in the data of one image.

The advantages of trading off pixel bit parallelism
against spatial parallelism for an LPA are not at all
trivial. The question is: is an LPA/SPA with 8-bit grey
value PEs eight times more powerful than an LPA/SPA
with the same number of bit serial PEs? From the point
operations we know, this is true for point and propagation
operations in the pixel sense. However, the pixel global
operations (like multiplications) are done faster than the

factor of eight increase in pixel parallelism would sneeest.
At this point one should realize, that the gain in pixel bit

parallelism is usually at the cost of neighbourhood
parallelism. This means, that the grey value LPA/SPA will
be less efficient in doing normal LNOs like erosions and
dilations. Although equipped with less hardware, the bit
serial LPA/SPA will be much faster for such operations.
‘For the combination of pixel global and spatial local
operations (i.e. convolutions) the grey value LPA/SPA
again wins more than the pixel bit increase would suggest.

An important advantage for the PL and (in some cases) the
LPA over the SPA can be noticed from the observation that
the instructions loaded in the PEs of the first two
architectures remain in the PEs for a longer time than is the
case with the SPA. The longer the time that an instruction
remains in a PE, the longer the time which can be used to
load it, i.e. the more powerful (with respect to the
instruction overhead) the PE which can be used. An
instruction remains for N*N clock cycles in the PE of a PL,
it remains for N*[N/P] clock cycles in the PE of an LPA,
and for [N/V(P)]2 clock cycles in the PE of an SPA (when
using hardware scanning). The LPA is only better than the
SPA, if the SPA has more PEs than the LPA (this is the
case for most existing LPAs and SPAs).

From the overview of the comparison which is done it is
clear, that the LPA performs better than or as well
as the PL or SPA on all available points.

312



The performance of the architecture groups for object and
global operations which can be built up by recursive
neighbourhood operations is discussed in chapter 6.

The results of the comparison are summarized below:

SPA LPA PL
Data Input speed +- ++ o+
Image size flexibility +/- + ++
Pixel size flexibility ++ ++ -
Neighbourhood size/shape +- + =
Programmability + + S
Point operations ++ o+t
Local Neighbourhood Op.ns ~ + - -
Object operations +/- + -I+
Recursive Nbhood Op.ns ++ + -
Global operations - He =
Geometric Operations +#-1) +2) -
Statistical Scalar Op.ns :/- ; :+

Statistical Vector Op.ns

1) Warping can only be done in SPAs which allow manipulation
with their own address and have local activity autonomy.

2) If equipped with local addressing autonomy,

Table 3. Summary of the conclusions on the comparison

6. Recursive Neighbourhood Operations.

In the past decade the various architectures were focussed
on neighbourhood processing. However many algorithms
operate only on the objects in an image. Happily many of
these algorithms can be rewritten as Recursive
Neighbourhood Operations (RNOs) (Komen 1990a). In
RNOs not only the normal neighbourhood, but also the
recursive neighbourhood is used. To avoid mis-
understandings in the meaning of RNOs: The adjective
'recursive’ applies to 'neighbourhood’, just as 'local' from
LNO applies to 'neighbourhood’. Therefore, RNOs are
recursive in the spatial sense, and not necessarily in the
temporal sense.
With:  input image X, output image Y,
position vector k and time n,
then:

Yin) = f(Xa),Y(n-1))s

i describes a temporal recursive system,

an

Yk = f(Xk), Y(k-1)s

describes a spatial recursive system.

The temporal system needs a delay element D, so that the
output signal Y[n] can be calculated from the output signal
at time n-1. In the spatial system, however, the output
signal Y[k] is calculated using the output signal at position

6.1 Examples of RNOs.
Some RNO's are:

* The inverse convolution (GlO).

The relative maximum minimwmn (GlO) (Haralick 1981).
The recursive median and the maximum |/ minimum
median root (GlO) (Arce & Crinon 1984; Déhler 1989;
Komen 1990) .

Image dithering (GlO) (Vossepoel 1989)

The distance transform (OO) (Rosenfeld & Pfalz 1968).
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The signed euclidian distance transform (OO)
(Danielsson 1980).

The grey weighted distance transform (OO) (Yokoi et al.
1981).

The constrained distance transform (GlO), (Dorst &
Verbeek 1986).

The A* algorithm (GIO) (Verwer et al. 1989).

The Smallest Enclosing Regular Polygon (OO) (Komen
1990a).

Skeletonization (OO) (Van Vliet and Verwer 1987).
Object selection or object labeling (OO).

6.2 Features of RNOs.

The aim of the RNO is to find a solution which results in a

stable output image Y at all points at the same time.

A few observations can be made:

* The function f may be applied to a point in Y more than
once, so that calculated pixel values are used in the
calculation of a new pixel value.

« It may not be possible to find a final stable image Y.

« Itmay be possible to find different stable images Y.

Updating methods define the order in which points are
updated to calculate a specific RNO. These methods may
influence the speed of calculation and may result in different
solutions for some RNOs. The updating methods are:

* Deterministic updating: Simultaneous, raster scan,
meander scan, left/right spiral, row/column, chessboard,
Successive Over Relaxation (SOR).

Data dependent updating: recursive or depth first,
queuing or breath first, bucket-queue.

Stochastic updating: Asynchronous, Poisson.

Combinations of these groups are also possible.

The data-dependent updating methods perform one or more
orders in magnitude better than the deterministic ones for
most RNOs and from these methods, bucket-queue
updating performs the best. The parallelisms in the
SPA, LPA and PL can however not be used to implement
any of the data dependent techniques directly. Though a
queue updating method on the scanning level combined
with a deterministic method on the array level can be used.
A performance comparison for increasing number of PEs
has been done between the three architectures using their
respectively best updating methods. For the PL this is the
serial updating method and for the LPA and the SPA the
combined updating method. Whether or not data input time
is taken into account, the SPA performs best in
almost all cases. There are in general no large
differences in performance between the LPA and the PL for
the same number of PEs. (Komen 1990a).

7. Support for RNOs from the
architectures.

7.1 RNO support in a Pipeline.

As an example of a pipeline that is able to perform RNOs
using raster scan updating the Cellular Logic Processing
Element will be discussed (Jonker et.al. 1985; Kraaijveld et
al 1986; Jonker et al. 1988). The CLPE is able to perform
3x3 cellular logic operations on binary images. Figure 4
shows the datapath of the CLPE. The heart of the CLPE is
formed by a writeable logic array (WLA) and a majority
vote unit (MVU). The CLPE can be down-loaded with
several sets of hit-or-miss masks, each set being able to
perform one Cellular Logic Operation. Both the LNO and
RNO form are supported, as shows the shiftregister section
for the recursion in figure 4.
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Figure 4. Internal datapath of the CLPE.

For the CLPE, Serra's definition of a Hit or Miss
transformation (Serra 1982) was extended. It is now
informally defined as:

If for any pixel in an image its neighbourhood fits a given
mask from a mask set, the pixel is set to one. Each mask
may be filled with ones (1), zeroes (0) and don't cares ().
For the recursive cellular logic operations (RNOs), not only
the pixels from the normal 3x3 neighbourhood should be
specified, but also the pixels from the recursive
neighbourhood. The cellular logic operation is selected by
choosing a set of masks (WLA) or majority-number (MVU)
using an instruction register of the CLPE. New celular logic
operations can also be down-loaded, during processing.
When frame recirculation is used, the CLPE is able to
perform the raster scan from top-left to bottom right in all
odd iterations and from bottom-right to top left in all even
iterations. This yields a better performance e.g. by thinnig.
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Figure 5. The mask-set for the 4-connected
propagation. The shaded pixels are taken from the
recursive neighbourhood.

Figure 5 gives the mask set of the 4 connected or cityblock
propagation, usable for object selection. Figure 6 gives the
the mask set of a 4-connected chessboard metric skeleton.
Note that the first mask is the mask for the erosion of an 8
connected object contour.
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Figure 6. Mask set for the 4-connected skeleton
based on 8 connected erosion: 1 erosion mask (8C),
6 break_pixel masks (4C), 1 single_pixel mask,

4 end_pixel masks (4C).

See for a rather similar approach: (Maragos 1987).
As a mask set is defined as the logic OR of the masks, the
set can be written as a boolean equation in canonical form.,
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The Writeable Logic Array was derived from the
Programmable Logic Array (PLA). Specifying a binary
rank filter using masks would involve to much masks,
hence a separate rank filter unit based on a tally circuit was
added. A small chip surface compared with the WLA.

The CLPE was theoretically modified to make a comparison
with the CLIP-4 PE possible (Duin and Jonker 1988).
Finally a pipeline able to perform grey-value RNOs based
on this modified model was designed (Komen and Duin
1989; Jonker et al. 1989). A 12 Mhz test version of the chip
came out in 1988, the final version still sticks in the silicon

foundry.
7.2 A RNO in a combined LPA / PL approach.

A second try-out of RNOs on special architectures was the
implementation of the Distance Transform on a data-flow
test system based on the NEC IMPP data-flow processor
chips (Iwashita et al. 1986, Fujita et al. 1990). The test
system came straight from the data-sheets (figure 7). Up to
8 IMPP chips can be connected to each other by a token
ring, and through a (MAGIC) interface chip to the image
memory. Through the ring the IMPPs can send data tokens
to each other. They can also send memory address tokens
to the image memory, which returns pixel data tokens.

[ VME bus INTERFACE |

MA ; :
CONTROLLER INTERRUPTER | .| MAGIC ]
‘ RAM
W6 K
L3
J "
Lo nor L1 nap IMPP ey

Figure 7. A data-flow / token ring test system.

The IMPPs are asynchronously connected in the ring and
have 1/O queues. The token ring approach made it possible
to simulate various architectures. The pipeline form is
obvious, but also a LPA structure can, somewhat more
cumbersome, be simulated if each IMPP only addresses the
memory for its own row or column and its neighbour rows
or columns. Although all processors operate on the global
memory through the fast ring it remains a bottleneck for
LPA and SPA solutions. The IMPPs themselves have
limited storage capacity for constants. Most data structures,
like a histogram need to be stored in the image memory.

As an example of an RNO a (5,7) Distance Transform of a
2562 image was implemented on the system (Borgefors
1984). Figure 8 shows the masks that were used for the
downward and upward scan. Note that only the central
pixel is taken from the normal neighbourhood, the other
pixels from the recursive neighbourhood.

(downward scan) (upward scan)
s|7] |5
Jis
Wy Wy

Figure 8. Filter constants for the (5,7) Distance
Transform

The basic idea of the algorithm was that each IMPP
processes a line of the image, passing information of
already processed pixels to the IMPP that processes the
next line in the image. Figure 9 shows the principle for the
downward scan. The values of the shaded pixels have
already been calculated. The processors 1 to 4 calculate a
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Figure 9. Using 4 PEs for the distance transform.

Each processor reads its own original values from memory.
In the same way each processor writes its own results to the
memory.

Concluding, by using a combined LPA - PL approach on
an image larger than the array size the distance transform
could be implemented on this ring architecture. However,
the maximum speed was dictated by the memory acces.

8. Wave front operations and special
architectures.

In image processing, a large part of the operations only
apply on the objects or blobs in the image. Hence it would
be very advantageous if the only pixels to be processed
were the pixels of these objects or blobs. Moreover, in
most of these operations the only pixels to be processed are
the pixels on the border of the blobs or objects. Examples
are erosions, dilations, skeletonization, labelling, distance
transform, region growing. Hence possible parallelism is
found in the independent regions, blobs or objects that can
be processed by different processors. If on all border pixels
of the region the same operation is performed even all
border pixels might be processed on different processing
elements.
Therefore the concept Region Parallelism (Pr) is introduced
as:

The number of different regions (e.g. objects) that can

be processed in parallel.

And the definition of Spatial parallelism (Ps) is extended to:
The number of different pixels of an image or region that
can be processed in parallel.

The conclusions in chapter 6 were, that writing an operation
as an RNO is an efficient way to perform an object
operation and that almost none of the existing architectures
have a hardware possibility to enable data dependent
updating,

8.1 A special architecture for graph searching.

In an attempt to realize an architecture supporting data
dependent update techniques a simulation of a special
architecture for a uniform cost algorithm (A*) was done
(Jonker et al.1988).

The A*-algorithm falls into the class of graph search
problems. The algorithm starts in one image point and
spreads out in a wave front over the image, similar as with
the distance transform (Verwer 1989). Note that the
necessity for a special architecture came from the fact that
the algorithm was applied on a robot collision avoidance
problem and the interest in collision avoidance originated
from the research on distance transforms. With a 6 axis
robot that is supposed not to collide with objects in 3D
space even a 6D problem and thus a 6D image arises. The
points in the N-dimensional image are the nodes of the
graph. All nodes are locally connected, except for obstacle
points, which are not connected at all. See figure 10 where
N=2 and the nodes are 8 connected.

Goal
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. closed

44

fraversal

Tree

B

Figure 10. The graph of a 2D path finding process
after a few node expansions. The numbers attached to
the nodes are evaluation values as computed by A*.
The diagonal transition cost is 7, the horizontal and
vertical transition costs are 5.

In our application A* degenerated into a uniform cost
algorithm. Circular waves of equal cost propagated from
both start and goal node in all directions. The front
generation stopped when both fronts touched.The
parallelism in this case can be found in the two independent
fronts and the pixels on the border of the fronts.

From the IMPP experiment it was learned that:

a) Each PE should have its own memory coupled with a
Processor Mapping Function (PMF) onto the problem
space in a global memory.

b) The token ring appeared to be a good solution for a fast
autonomous data communication between the PEs.

As mapping function a crinkle-wise approach was taken, so

each PE operated on a sub-sampled version of the problem

space. Each PE contained a bucket queue (comparable with
an input queue with bucket sort). The PE pruned incoming
nodes, evaluated nodes and generated successors. The
successors were marked with their address and front-code

(start or goal) and put onto the data network. A hyper-ring

was proposed. Each PE in the ring automatically absorbed

the tokens that were 'his’ according to the mapping function
and stored it in his input (bucket) queue.

The effect was that pixels from both the start- and the goal

front were processed by the same PEs. Due to the crinkle-

wise mapping a uniform load on all PEs was obtained.

Note that using thds growing wave-front approach the delay

in the data network is of low importance for the speed of

the system.

8.2 Towards an architecture for region growing.

With the A* architecture as sketched above all PEs operated
on all border pixels of both wave fronts. There was no need
for context switching, the two fronts were similar and the
operations on the front toke place synchronously. )

A rather similar, but yet different wave front problem is the
region growing problem for 2.5D images. In this problem
first and second order surfaces are fit onto a 2.5D
'landscape’ (Besl and Jain 1986, 1988). In this app_rouch all
the points on the border of a region are tested with a test
criterion and added to the region if the test holds. If the
whole border has been processed a set of equations is
solved to update the surface parameters. The procedure
continues until no more points can be added to the region.
The region growing starts from suitable seeds and a number
of wave-fronts may occur.

Though the operations involved are equal for each wave
front, in this case however, each region has its own specific
data to maintain. A structure with crinkle-wise mapping as
in the A* problem is not usable here. Distributing the new
results over all other PEs involved in a certain front would
mean a severe overhead for those PEs. Moreover all PEs
would have to switch context for almost every pixel from
their queue if each PE were involved in all fronts.

Window mapping would be better. Then each PE takes care



of its own window growing its own seeds. If a region
tends to cross a border it could stop growing and leave the
merging over borders to the global region merging step for
small regions that was needed anyway. Or it could put the
border pixels via a hyper-ring network as a seed onto the
queue of the neighbouring PE, together with the surface
data. Sometimes, some of the initial windows are so full of
detail that the PE cannot gain speed in its fronts in its
original window. Other PEs on the other hand might have
finished their window. In that case it would be better if a
reshuffling of windows could be arranged. This approach
would mean the introduction of a dynamic processor
mapping function.

9. Conclusions.

+ Low-level and intermediate level algorithms are often
heavily mixed. Consequently novel architectures should
smoothly support both low-level as well as intermediate
level image processing,

+ Floating point support is desirable for many 2.5D and
3D tasks.

+ For 3D image processing the idea to attach a PE to each
voxel must be abandoned. Processor Mapping Functions
should specify the division of pixels over PEs.

= Due to the competition with super workstations it is
desirable that the architecture supports high level
languages (C), the programming of user defined data
structures and the random accessibility of all pixels.

= The wish to attach groups of PEs to different concurrent
tasks points to a more MIMD form of local autonomy.

* Pyramidal structures can be fruitfully simulated on
Square Processor Arrays (SPAs). The use of pyramidal
data structures on SPAs increases its efficiency.

+ Expressing Global Operations (GOs) and Object
Operations (OOs) in a Recursive Neighbourhood (RNO)
form is very efficient.

* LPAs perform better than SPAs for Local
Neighbourhood Operations. Pipelines (PLs) perform the
worse. SPAs perform better for Recursive
Neighbourhood Operations than LPAs or PLs.

* Most image processing architectures have no special
provisions for recursion,

+ Data dependent updating using queues or bucket -queues
yields wave front processing. To enable wave front
processing each PE should preferably have hardware
facilities for input queues or input bucket structures.

* To avoid memory bottlenecks each PE should work only
on its own piece of image memory. The memory access
should differ from the data network. A mapping function
such as crinkle-wise or window-wise depicts the global
image memory onto the memories of the PEs.

+ Each wave front problem has its own solutions. Hence
the mapping functions should be programmable, The
possibilities of dynamic Processor Mapping Functions
needs investigation.
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