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Abstract 

In the last decade many architectures for low-level image 2- Image processing tasks. 
processing were developed. But simultaneously the image 
processing tasks were growing and changing, resulting in a As we look at tasks that are performed in image processing 
different set of basic operations than was needed ten years nowadays a few profiles can be sketched, without 
ago. An attempt is made to classify the existing and pretending to beexhaustive: 
proposed architectures over the past ten years followed by 
the results of a theoretical comparison on three of the main 2.1 Industrial inspection and robotics: 
groups of architectures, the pipelines, the processor arrays 
and the linear processor arrays. One of the conclusions is Industrial inspection and robotics is nowadays a main 
that recursive neighbourhood operations appear to be an application field of the classical 2 0  image processing 
efficient way to implement global operations and object sequence. 
operations. But is there support from the architectures? Image acquisition in this field involves both CCD video 
Another conclusion is that queue or bucket updating is an cameras and line-scan cameras. Gray-value filtering is 
extremely efficient way to process pixels, especially when avoided by solving the illuinination problem and 
many elements have to be processed as in 3D image segmentation is typically done by thresholding followed by 
processing. With the amount of elements to process in a 3D post-processing mostly in the form of morphologic 
image, the idea of 'one pixel or voxel - one processing operations. Measurements are often length of lines, 
element' has to be abandoned as hardly reachable with the sometimes surface, perimeter and circularity. Pattern 
current technology. 'Processing only the pixels that change' recognition is mostly done feature based. In this field most 
points in the direction of processing pixels or voxels only of the commercial real-time image processing systems find 
on fronts. These kind of operations, such as labelling, their application. E.g. inspection by placement of SMD 
skeletonization, distance transform and region growing are devices on printed circuit boards, inspection in robot 
characterized by the name: 'Wave Front Processing'. The assembly sequences. An example of an an advanced 
support from architectures needed for this type of processing sequence in this field would be the recognition 
processing is indicated. of 3D objects from a 2D image based on a learning set of 

images (Bart et a1.1990): Sobel edge detection, isodata 
1. Introduction. thresholding, hilditch skeletonization, line following, graph 

building, graph improvement, segment selection, 
classification with a nearest neighbour approach and The demands for high image processing learning set building, distance measure optimization, keep both rising and changing. Satellite data, printed circuit set optimization, matching threshold determination. board inspection and VLSI mask checking demand larger 

image sizes, about 4096x4096 and more, while 3D image 250 Image processing for indusaial inspection will mostly analysisrequires the processing of images with sizes be based on special sensor systems using laser triangulation 
of 256 x 256 x 64 voxels. Industrial inspection, robot (Stuivinga et al. 1989: Kanade 19891. Due to the short vision and interactive biomedical image processing are distances and acquired accuracy the label 'depth imaging' or 
based on more complex algorithms nowadays while the '2.5D imaging' is more suitable than 'range imaging'. 
pressure for equal Or faster System response times remains. Typical values are 800x800x800 mm - 8, 8, 8 mm or 50 
In the past decade many SMID architectures were designed x50x50 mm - 0.05, 0.05, 0.05 mm for field of view and 
and realized mainly to serve the field of low-level image accuracy. Laser radar range sensors are probably not 
processing. Characteristic architectures Were the Square suitable in this application field. Examples in the field of 
~rocessor Array (SPA) or mesh, the Linear Processor inspection: pallet loading, train rail inspection, SMD 
Array (LPA) or scanning array, the Pipeline (PL) and the inspection and the electrical razer blade inspection. 
Pyramid (PYR). Examples in the field of robotics are: recognition and the 
Due to the massive parallel character of the low-level image determination of 3~ position and Orientation ( 3 ~ ~ 0 )  of 
processing, solutions were often based either on many objects. Image acquisition is either performed using a 
small Processing Elements (PEs) constituting a 1 bit scanning laser point-beam, a scanning laser slit-beam or 

Machine and McCubbre~ using structured light (Inokuchi et a1.1984,1986; Vuylsteke 
1980a/b, ~ u f f  1982, Tanimoto 1986) or based on few more and Oosterlinck 1987; Jonker et al. 1990). Note that powerful DSP like PEs (Lindskog 1988). conveyor belts, robots and trains are scanning devices and As an outcome of the research in image processing of this can be used to one of the dimensions x or y. 
past decade* several software packages grew mature as a example of a processing sequence in this field would be: 

for problem and many manufacturers Range image acquisition using structured light, 
brought their image processing systems on the market, triangulation (transforming camera co-ordinates (u,v) onto based On a pipeline though other world coordinates (x,y,z). Note that the mapping function promising attempts were based On a Linear Processor Array should be found by a -preferably automatic- calibration 
architecture, such as the AIS-5000 (Wilson 1988). procedure. Image segmentation by first and second order 



surface fitting, followed by analytically intersecting the 
surfaces to obtain the edges. (Besl and Jain 1986,1988; 
Schmidt 1989). 

Object recognition and the determination of the 3DP0 of 
objects is also possible using a combined stereo vision I 
graph marching approach. Note that in this approach more 
than 2 cameras can be used. A typical processing sequence 
of such a system would be the recognition of objects using 
inexact matching of graphs (Buurman and Duin 1989). For 
two cameras in parallel: Edge detection, line following, 
graph building, graph improvement. Then: inexact graph- 
matching, object selection and measurements on objects. 
Note that a certain accuracy must be reached in the 
segmentation phase in order to have a reasonable result for 
the 3DP0 calculation. The segmentation is based on: 17 x 
17 binomial filter with st.dev. 2, 5x5 Dynamic Contour 
filter based on a none linear laplace - zero crossing method 
(Verbeek et al. 1988), skeletonization and chewing small 
skeleton ends. When performing a 2D-2D match first, a 3D 
graph is obtained which can be matched with a 3D wire 
frame obtained from learning or from a CAD database. 
Matching the separate 2D images directly onto the 3D wire 
frame is also possible. 

2.2 Biomedical Image Processing 

Biomedical Image Processing is often closely connected 
with 3D image analysis. Moreover, it is dominated, in 
contrast with the industrial image processing, by the effect 
of geometrical distortion of the image due to the sensors 
and by severe noise due to low intensities. Typical sensor 
systems are CAT scanners, NMR scanners, seismic 
tomography and confocal or ordinary microscopy. 
Measurements, display techniques and user interaction are 
important items for the medical oriented users. 
The acquisition is mostly obtained by a scanning device, 
which can introduce the problem of distortions induced by 
movement above the distortions of lenses. Exact 
reconstruction requires mostly operations in the frequency 
domain. A Problem in 3D image processing is the non- 
uniform resolution in x,y and z direction of the image, 
typically 256 x 256 x 64 voxels, which urges the need for 
either resampling or the modification of existing routines 
for the non-uniform resolution. An example of a processing 
sequence in the field of cytometry would be the 
Reconstruction of Periodic Signals based on FFT & IFFT 
(Young 1988,1989) followed by Thresholding, 3D- 
erosions & dilations, 3D-Object labeling to find the cell 
nuclei, thresholding, 3D-erosions & dilations, 3D-Object 
labeling to find the centromeres of the nuclei, 3D-distance 
transform (a modified approach of: Danielsson (1980)) to 
get the distance of the centromeres to the borders of the 
nuclei, exact calculation of the centre-of-mass, surface area, 
volume, texture, shape and total intensity of each object 
(ANA;3D benchmark: Young 1990). In chromosome 
projects, the straightening of bended chromosomes is a hot 
topic (e.g. based on a modified approach of: Wall and 
Danielsson (1984) ). 

3. Image processing operations. 

Image processing tasks are built from image processing 
operations. Figure 1 shows the classical distinction made in 
low level, intermediate level and high level image 
processing operations (Danielsson and Levialdi 198 1, 
Fountain 1986). 

Low-Level Toolbox High-Level Control 
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Figure 1. Classical distinction in levels of image 
processing. 

3.1 Low level operations. 

Given: source image X, destination image Y, value or 
value-vector V, structuring element (neighbourhood) S and 
p, q the position vectors of pixels within X, Y, or S, 
the following operations are considered to be low-level 
image operations: 

Point Operation (PO). Every pixel Yp in the 
destination image is a function f of the pixel Xp in the 
source image. 
Object Operation ( 0 0 ) .  Every pixel Yp in the 
destination image is a function f of the pixels Xp-q in the 
source image (where q are all positions within the 
object). 
Local Neighbourhood Operation (LNO). Every 
pixel Yp in the destination image is a function f of the 
pixels Xp-q in the source imaee (where a are all 
positions within the structuring element or 
neighbourhood S) 
Recursive Neighbourhood Operation (RNO). 
Every pixel Yp in the destination image is a function f of 
both the pixels Xp-q (the normal pixels) in the source 
image and the pixels Yp-q (the recursive pixels) in the 
destination image (where q are all positions within the 
structuring element or neighbourhood S). Note that the 
position Yq = 0 is called the central pixel, which mostly 
does not belong to the set of recursive pixels Yp-q. 
Global Operation (GIO). Every pixel Yp in the 
destination image is a function f of the pixels Xp-q in the 
source image (where q belongs to the complete image 
X), and of the absolute and relative positions p and q it 
selves. 
Geometric Operation (GeO). Every pixel Yp in the 
destination image is a function f of the pixels Xg(p)-q in 
the source image (where q belongs to the structuring 
element S(p), which may be depending on Yp , and g is 
a function on the source coordinate p ), and of the 
absolute and relative positions p and q it selves. 
Statistical Operation (SO). The value (vector) V is 
a function f of all pixels Xp in the source image (where p 
belongs to the complete image). 

3.2 Low level and intermediate level tasks. 

Table 1 shows image processing tasks which were defined 
at the Tanque Verde Benchmark Suite and the DARPA 
workshop (Rosenfeld 1987; Weems et al. 1989a). In the 
table it is indicated which tasks are low-level according to 
the definition and which are not (Komen 1990a). The tasks 
indicated by 'yfn?' could not easily be classified as 
belonging to field low-level image processing. Some 
algorithms performing the task might, some might not. 



Tanque Verde task: low-level: DARPA task: low level: 

Edge finding yes 11*11 Gaussian conv.ff of 5 12*5 12*8 bit image yes 
Line finding yes Detection of zero crossing in a cliff. of Gaus. im. y/n? 
Comer finding yes Construct and output border pixel list y/n? 
Noise removal yes Label connected components in a binary image yes 
Generalized Abingdon cross yes Hough transform of a binary image Yes 
Segmentation y/n? Convex hull of 1000 points in a 2D R (real space) y/n? 
Line parameter extraction no Voronoi diagram of 1000 points in 2D R no 
Deblumng yes Minimal spanning tree across 1000 points in 2D R no 
Classification no Visibility of vertices for 1000 triangles in 3D R no 
Printed circuit inspection no Minimum cost path through a weighted graph of 
Stereo image matching no 1000 nodes of order 100 no 
Camera motion estimation no Find all isomorphisms of a 100 node graph in a 
Shape identification no 1000 node graph no 

Table 1. Tanque Verde and DARPA tasks 

Some intermediate conclusions can be drawn: 
From the task profiles sketched above and from the 
operations in table 1 it becomes clear that: 

Most image processing applications demand a mixture of 
low-level and intermediate level image processing 
operations and that clear low-level tasks are seldom. Clearly 
classical 2D low-level algorithms are often heavily mixed 
with intermediate level algorithms, for instance to find 
regions of interest or to segment in a multi accuracy 
approach (Gerbrands 1988). 

2.5D image processing involves triangulation and may use 
geometric operations. 3D image processing involves exact 
reconstruction of the original image and accurate 
measurements. Floating point support for these tasks is 
desirable. 

3D image processing involves the processing of many more 
elements than 2D or 2.5D. Probably the idea to attach a PE 
to each pixel or voxel must be abandoned, at least when 
using conventional digital (VLSI) technics. 

Furthermore, as supercomputers become within everyone's 
reach and clever sequential programming remains a skill of 
many scientists, the challenge of programming an odd 
machine, while not having the freedom and services a 
sequential architecture offers, is often minimal (Groen et al. 
1988). Random access to each single pixel and the 
possibility to set up any data-structure is usually desired. 
The competition of a super-workstation is high. 

A last observation is that systems for a specific set of tasks 
are emerging. Systems such as industrial inspection 
svstems. robot vision svstems and interactive biomedical 
iorkstations. As a resilt of this trend, attention switches 
towards the construction of intelligent controllers operating 
on a toolbox of image processing routines. The decision 
which routine to use, which parameters to choose and in 
which sequence the routines are used is made by the 
controller that often is based on expert knowledge (Ozaki et 
a1.1988, Cheng 1990). Such a controller is able to start up 
competing procedures, weighting the results, or combining 
evidence. Which means that the execution of whole sub- 
tasks can be performed in parallel. 

Hence, rather than making a distinction in low, intermediate 
and high level image processing a distinction in a (low- 
level) image processing toolbox, possibly running on a 
dedicated architecture and a (high level) task dependent 
control system running on a workstation seems to be more 
appropriate today. It will be clear that novel architectures 

should be able to support the implementation of this entire 
toolbox and if this novel machine is not programmable in a 
common high level language it has little chance tot get 
adopted.This will probably mean that the PEs need to be 
more powerful and that the architecture has to be adopted to 
the new set of tasks. 

4. A classification of architectures. 

A discussion on image processing architectures capable to 
support such a toolbox requires insight into the principles 
of architectures. Architectures are best distinguished on the 
basis of their features. 

4.1 Parallelism. 

One of the ways to classify architectures is to specify their 
spatial or temporal parallel capabilities, often referred to as 
parallelism and pipelining. We can distinguish: 

1. Operation parallelism (Po): The number of different 
operations that can be executed in parallel, in spatial or 
temporal sense. 

2. Spatial parallelism (Ps): The number of different pixels 
of an image that can be processed in parallel. 

3. Neighbourhood connectivity (Cn) and Recursive 
neighbourhood connectivity (Cr): The number of direct 
connections to adjacent PEs that can in principle be used 
for (recursive) neighbourhood operations. 

4. Neighbourhood parallelism (Pn) and Recursive 
neighbourhood parallelism (Pr): The number of pixels 
of a (recursive) neighbourhood that actually processed 
in parallel in one clock cycle. 

5. Pixel-bit parallelism (Pp): The ability to operate in 
parallel on a number of bits per pixel. 

4.2 Memory interface. 

Another way to classify architectures is on basis of the way 
they handle their PE-memory connection and data structures 
possibilities. Normally in image processing architectures 
the data structures are fixed: two dimensional integer arrays 
contain the images. Sometimes provisions have been made 
to store other types of data such as histograms, sometimes 
the image data structure is used to store other data. 
Mostly the image processing systems have no single shared 
memory, but it is distributed over the PEs and so is the 
image. (though sometimes for 110 special provisions are 
made). For geometrical operations the kn~wledge of its 
own address is very convenient for a PE. Since 
neighbourhood operations form a large part of the 



operations, most image processing systems let their PEs 
transfer their data through a network. This network reflects 
the neighbourhood connectivity of the PEs. 

4.3 Data network topology. 

The data network topology of an architecture determines 
how many steps are necessary to transport data from one 
PE to any other PE in the machine. Properties of data 
interconnection schemes are analyzed by Forshaw 
(Forshaw 1987). Some topologies are: Star or bus, 
Pipeline, Ring, Torus, Linear array, Mesh, Tree, Pyramid, 
Binary N-cube, NlogN reconfiguring network, Fully 
interconnected (Uhr 1988). 

4.4 Levels of local autonomy. 

Classification can also be performed the level of local 
autonomy in between SIMD and MIMD.The following 
types of local autonomy are suggested by Fountain and 
others (Lindskog 1988; Cypher and Sanz 1989): 

Local activity control (Act). A mask bit in the PE 
indicates whether the PE may "join" the calculations or 
not. 
Local data addressing control (Adr). The address of the 
source andlor destination data address can be locally 
determined. This is usually done by allowing local data 
from a PE to serve as index in a global provided base 
address. 
Local function control (Fie). The local data (or part of it) 
is used to select the function which is executed in a PE. 
Local connectivity control (Cnc). The way in which a PE 
connects to its neighbouring PEs can be locally 
controlled. 
Local algorithm control (Alg). In this level of autonomy, 
each PE can be loaded with a different program, but the 
sequencing is still global. Pipelines always have local 
algorithm control. 
Local sequencing control (Seq). On top of the local 
algorithm control, the sequencing of the programs in a 
PE can also be locally done. The PEs are no longer 
synchronously connected, so that handshaking is 
necessary. 
Local partitioning control (Prt). The PEs are given the 
capability to partition their programs (parts of them) over 
other PEs. 

4.5 Instruction stream handling. 

Mostly no attention is paid on the instruction stream 
handling of the parallel machine, though for some machines 
the instruction stream might form a problem. E.g. meshes 
with usually simple PEs and not able to store their 
programs might have problems with the feed of 
instructions.Sometimes parts of the data network are used 
to transfer instructions. 

4.6 Architectural groups. 

Low-level architectures can be grouped in: 

1. Pyramids (PYRs). 
2. Square Processor Arrays (SPAs). 
3 .  Linear Processor Arrays (LPAs). 
4. Pipelines (PLs). 

A Pyramid (PYR) is a stack of two dimensional square 
arrays of Processing Elements. Each PE has connections to 
father(s) (mostly I), in plane neighbours (mostly 8) and a 
number of sons (mostly 4). Simulating an SIMD Pyramid 
on the CLIP4, Teeuw concluded that simulation of a 
pyramidal data-strucmre in the memory of a small processor 

array is a possibility to increase the processing power of the 
array. And that the sfficiencv of a full size hardware 
pyramid is decreased by the fact that this pyramid consists 
of many processing elements that are idling during a large 
part of the algorithm execution. Because the advantageous 
features of a pyramid are only effective for a subset of the 
set of image processing tasks and simulated pyramids seem 
to be more effective than hardware pyramids, Teeuw 
concluded that it may be better to simulate a pyramid on a 
small processor array than to actually build one (Teeuw and 
Duin 1989). 

A Square Processor Array (SPA) is an array of PEs 
connected in a 2D grid. Note that the number of neighbours 
that can be reached directly (the neighbourhood 
connectivity) is not always the same as the neighbourhood 
parallelism. Some arrays allow direct access to 8 
neighbours, but only one or two at a time can be used in 
calculations. Each PE contains its cwn local memory to 
store the image pixel value corresponding to its position in 
the array. If a large array is built, the PEs will in general be 
designed with less possibilities than the PEs of a small 
array. No SPAs for image processing with fully 
programmable PEs have come to our attention. 
With a full-array, the image is as large as the SPA. Due to 
the large number of PEs needed for increasing image sizes, 
this seems only suited for optical mays such as the DOCIP 
(Huang et al. 1989). Current arrays have sizes from 8*8 to 
128*128, though larger sizes may be assembled. A 
Processor Mapping Function (PMF) is used to distribute 
the image points over the PEs. A PMF shows in which 
memory plane m and in which PE at position (x,y) of the 
SPA the image point (ij) is stored, the usual PMFs are 
labelled: full size, window mapping and crinkle mapping. 

Figure 2. Crinkle mapping and window 
mapping on a SPA 

With crinkle mapping, every PE contains a consecutive part 
of the image. This means that the points which are 
neighbours in the original image will in general not be 
neighbouring points in the crinkle-mapped image. Crinkle- 
mapped images may therefore only be processed with a 
neighbourhood parallelism of 1. Because of the fact that 
sub-sampled versions of the image are stored, crinkle 
mapping may be used to do multi-scale image processing or 
to simulate an SIMD pyramid (Teeuw and Duin 1989; 
Komen and Duin 1990). 

For window mapping, the SPA is loaded with image 
windows (pieces) of size .\I(P)*~(P). Although every 
window can be processed individually, hardware or 
software should provide the values of the neighbours which 
are across the window borders. Several methods exist to 
solve this 'edge-problem'. For instruction level processing 
(all image points are treated for one instruction, then for the 
next) the most promising methods appear to be Edge Store 
Scanning (ESS) or Half Scan Addressing (HSA) (Fountain 
1987; Buurman and Duin 1988). SPAs are seldom 
equipped with special edge hardware (Fountain 1987). 

A Linear Processor Array (LPA) has a one 
dimensionally connected set of P processing elements (PEs) 
to process an NxN image. If the image size N equals the 
number of available PEs P, then-every PE processes one 



column. Otherwise, a processor mapping function (PMF) 
determines which image point is processed by which PE. 
The two PMFs used for an SPA -crinkle mapping and 
window mapping- are also used with LPAs. The AIS-5000 
uses window mapping, and the PICAP3 uses crinkle 
mapping (Wilson 1988; Lindskog 1988). A third PMF in 
use, is the helicoidal mapping for the SYMPATI-2 (Juvin et 
al. 1988). This mapping makes it possible to scan the array 
both horizontally as well as vertically across the image. 
From the scanning point of view, PEs with a 
neighbourhood parallelism greater than one (the AIS for 
instance has a neighbourhood parallelism of five) will 
preferably use window-mapping, while other PEs may use 
crinkle mapping if scanning is only needed in one direction, 
or may use helicoidal mapping if scanning should be 
possible in both horizontal and vertical directions. When an 
LPA uses window mapping, hardware or software should 
provide for the values of the neighbours which are across 
the window borders. An LPA has a strong advantage here 
over an SPA, as a simple hardware scheme allows a 
scanning technique which does not give any overhead 
(Wilson 1989a) 

Figure 3. Crinkle mapping, window mapping 
and helicoTdal mapping on a LPA. 

In a PipeLine  (PL) of processors, there are P PEs 
performing a number of operations in parallel, and working 
on a sequence of pixels from an NxN image. Image data 
comes from a memory or from an input device like a frame 
grabber which gives a sequential flow of pixels. This data 
is fed into the first PE, processed by it, the result is fed into 
the next PE and so on.The result after P PEs can be 
displayed or stored again in memory. The speed of the PEs 
should be equal for synchronization, but the PEs 
themselves do not have to be identical. When a PL 
incorporates different PEs it should be reconfigurable, so 
that an optimal path through the PEs can be made. If a PL 
consists of identical PEs, these should be programmable, 

such that a set of operations can be performed in the right 
order. Research has been done to find out what a general 
purpose bit-serial PE for low-level image processing should 
look like. By studying the nature of low-level image 
processing operations, it is noted that they can in principle 
be build up by bit-serial local neighbourhood operations 
(Duin and Komen 1989). These operations can be 
performed by PEs with the following connections: 

Two image inputs, so dyadic operations can be done. 
The local neighbourhood of one of the image inputs, so 
that local neighbourhood operations can be done 
directly, and larger neighbourhoods (up to global 
operations) can be treated by using the local 
neighbourhood operations as a basis. 
A cany in- and output, so that grey value images can be 
processed. 
At least one image output to be fed into the next PE of 
the pipeline. 

The PEs may be combined to extend the operation 
parallelism, by putting one after the other, but also to 
extend the pixel parallelism. Such an array of pipelined PEs 
may process longer algorithms by using frame 
recirculation, and a carry memory may be used to store 
intermediate carry results, so that it is even possible to do 
high precision image processing at the cost of decreased 
speed (Jonker et al. 1989). 

5. A comparison of architectures. 

The following chapter is based on a theoretical comparison 
of low-level architectures (Komen 1990a). The strategy 
taken by Komen for the comparison can be outlined as: 

"Look at the speed, efficiency, flexibility (concerning image 
size, neighbourhood size and data I/O), and 
programmability of different architecture groups (SPA, 
LPA and PL) and for different operation groups (PO, LNO, 
00, RNO, G10, GeO, SO)" 

5.1 Investigated machines. 

The research was based on the architectures of the 
following machines: 

Existing low-level I P  architectures 

Name: Smams: Autonomy: Topology: PO: PS: PN: CN: PR: CR: PP: Group 

ILLIAC III SIMD no mesh 1 32*32 8 8 0 0 1 SPA 
DAP-610 SIMD no mesh 1 64*64 1 4 0 0 1 SPA 
MPP SIMD no mesh 1 128*1281 4 0 0 1 SPA 
CLIP4 SIMD no mesh 1 128*128 8 8 8 8 1 SPA 
G APP SIMD Act mesh 1 24*24 2 4 0 0 1 SPA 
CAAPP SIMD Act. Cnc mesh 1 512.512 2 4 0 0 1 SPA 
AIS-5000 SIMD no line 1 1024 5 3N 1 1 1 LP A 
PICAP3 SIMD Act Adr Fie line 1 2 1 3N 1 4 32 FP LPA 
WARP MIMD all line 1 0 1  1 1 1 1 32FF' PL 
Cyto-HSS MISD Alg line 88 1 9 9 0 0 l o r 8  PL 
DIP MISD no line 5 1 911 919 410 410 1/18 FF' PL 
CLO-VLSI SIMD Alg line 12 1 9 9 0 0 1  PL 

I Proposed low-level I P  architectures 

I ~ a m e :  Streams: Autonomy: Topology: PO: PS :* PN: CN: PR: CR: PP: Group: 

BASE SIMD no mesh 1 8*8 8 8 8 8 1 SPA 
SIMD no mesh 1 64*64 1 8 0 0 1 SPA 5 sIMD no 

mesh 1 - - - - 1 SPA 
SIMD Con toms 1 - - - - 1 SPA 



DOCIP SIMD no 
SLAP SIMD A& 
CLIP7 SIMD Adr,Act 
SYMPATI-2 SIMD no 
PIPE MISD Fie,Pr 
MITE MISD Pr 
CLPE-VLSI SIMD Pr 
PAPIA MSIMD no 
IMPPlTIP4 SIMD A& 

mesh 
line 
line 
line 
line 
line 
line 
pyramid 
data 

1 full 
1 1024 
1 256 
1 256 
>1 1 
>I 1 
> I  1 
1 - 
>1 >1 

any any 0 0 1 
1 3N 1 1 8..20 
1 3N 1 1 K.16 
1 3 N 1  3 8  
9 9 1  1 1  
9 9 1 1 1  
9 9 4 4 1  
5 1 3 0  0 1  
1 1 1 1 6  

SPA 
LPA 
LPA 
LPA 
PL 
PL 
PL 
PYR 

I * intmdcd size; N = size of the image being processed; - = Not Applicable I 
I Table 2. Compared architectures. I 

In the theoretical comparison between the SPA, LPA and 
PL for local neighbourhood operations, the following 
assumptions were made: 

All processing elements are of equal complexity and 
functionality. 
The clock speed is the same for all architectures. 
The minimum overhead factors as found in existing 
machines will be used for all three architecture groups. 
No extra time for down-loading programs is taken into 
account, as this is assumed to take place concurrently 
with processing. 
The data 110 mechanisms which are generally found for 
the architecture groups will be taken. This means: raster 
scan data 110 for the PL and the LPA, and column 
parallel data VO for the SPA. 
It is assumed that the number of PEs used in the SPA, 
LPA or PL is the same. 
The Dower of the individual PEs used in the SPA. LPA 
and h~ is the same. This assumution is in .close 
connection with the previous one. 1i more PEs for the 
SPA are allowed, then the power of each PE will be 
designed to be less, 

5.2 Results of the comparison. 

Conclusions of the comparison are: 

The actually encountered data input speed is the fastest 
for the LPA that uses row parallel data input and quite good 
for the PL due to its overlapping processing and 110. Some 
of the SPAs today use column parallel data 110, and some 
use raster scan data VO. Hence an in-between score for 
SPAs. 

The image size flexibility from the PL is traded for low 
programmability. On the other hand, the SPA and LPA 
trade enhanced programmability for low image size 
flexibility. This is in agreement with the difference in 
temporal- and spatial parallelism offered by these 
architectures. The image size flexibility of the SPA may be 
less if it does not have facilities to handle images larger than 
its m y  size. 

Bit serial SPAs and LPAs offer the largest flexibility in 
pixel size. A bit serial PL needs to be equipped with a lot 
of special hardware to offer any flexibility in pixel depth. 
Also, processing multiple bit images requires the bit serial 
pipeline to recirculate through a frame buffer. When all 
three architecture types are equipped with the same grey 
value ALU, then their pixel size flexibility is the same. 

Concerning the neighbourhood -size and -shape 
flexibil ity,  the LPA scores best due to its large 
neighbourhood connectivity. An SPA which uses crinkle 
mapped image storage may also be reasonable. 

Point and local neighbourhood operations show no 
difference in performance. This is due to the fact that 
similar PEs are assumed in the comparison. 

I 

For object, global and geometric operations, data 
may have to be transported over longer distances at the 
highest possible speed, possibly in an anisotropic way. In 
such cases, the LPA performs best, followed by the SPA 
and PL. This is due to the large neighbourhood connectivity 
and the local addressing autonomy possibility of the LPA. 
At this point it may be argued, that the SPA can perform as 
good as the LPA when the images are stored crinkle-wise in 
the local memory of the SPA. The SPA would then also 
have extended neighbourhood connectivity. However, the 
gain in neighbourhood ~onnectivitv for the SPA with 
crinkle-wise mapping is accompanied by a loss in 
neighbourhood parallelism. This is because the neighbours 
of one image point may have been stored in the same PE for 
this mapping technique. These can not be fetched in 
parallel. The LPA does not loose neighbourhood 
parallelism due to the fact that its neighbourhood 
connectivity is large. SPAS can be enhanced with local 
connection autonomy, so that their performance increases. 
PLs cannot be enhanced in any way for these type of 
operations. They have their concurrency in the instruction 
stream, not in the data of one image. 

The advantages of trading off pixel bit parallelism 
against spatial parallelism for an LPA are not at all 
trivial. The question is: is an LPNSPA with 8-bit grey 
value PEs eight times more uowerful than an LPAISPA 
with the same number of bit'serial PEs? From the point 
operations we know, this is true for point and propagation 
operations in the pixel sense. However, the pixel global 
operations (like multiplications) are done faster than the 
factor of eight increase in oixel oarallelism would sueeest. 
At this point one should realize, that the gain in pixel bit 
parallelism is usually at the cost of neighbourhood 
parallelism. This means, that the grey value LPNSPA will 
be less efficient in doing normal LNOs like erosions and 
dilations. Although equipped with less hardware, the bit 
serial LPNSPA will be much faster for such operations. 

#For the combination of pixel global and spatial local 
operations (i.e. convolutions) the grey value LPAISPA 
again wins more than the pixel bit increase would suggest. 

An important advantage for the PL and (in some cases) the 
LPA over the SPA can be noticed from the observation that 
the instructions loaded in the PEs of the first two 
architectures remain in the PEs for a longer time than is the 
case with the SPA. The longer the time that an instruction 
remains in a PE, the longer the time which can be used to 
load it, i.e. the more powerful (with respect to the 
instruction overhead) the PE which can be used. An 
instruction remains for N*N clock cycles in the PE of a PL, 
it remains for N*[N/P] clock cycles in the PE of an LPA, 
and for [ N / ~ ( P ) I ~  clock cycles in the PE of an SPA (when 
using hardware scanning). The LPA is only better than the 
SPA, if the SPA has more PEs than the LPA (this is the 
case for most existing LPAs and SPAs). 

From the overview of the comparison which is done it is 
clear, that the LPA performs better than or as well 
as the PL or SPA on all available points. 



The performance of the architecture groups for object and 
global operations which can be built up by recursive 
neighbourhood operations is discussed in chapter 6. 

The results of the comparison are summarized below: 

SPA LPA PL 

Data Input speed +/- ++ + 
Image size flexibility +/- + ++ 
Pixel size flexibility ++ ++ - 
Neighbourhood sizelshape +/- + 
Programmability + + 
Point operations ++ ++ ++ 
Local Neighbourhood Op.ns + + + 
Object operations +/- + -I+ 
Recursive Nbhood 0 p . n ~  ++ + 
Global operations -- +/- -- 
Geometric Operations 1 +2)  - 
Statistical Scalar Op.ns +/- + ++ 
Statistical Vector Op.ns ? ? ? 

1) Warping can only be done in SPAS which allow manipulation 
with their own address and have local activity autonomy. 

2) If equipped with local addrcssing autonomy. 

Table 3. Summary of the conclusions on the comparison 

6. Recursive Neighbourhood Operations. 

In the past decade the various architectures were focussed 
on neighbourhood processing. However many algorithms 
operate only on the objects in an image. Happily many of 
these algorithms can be rewritten as Recursive 
Neighbourhood Operations (RNOs) (Komen 1990a). In 
RNOs not only the normal neighbourhood, but also the 
recursive neighbourhood is used. To avoid mis- 
understandings in the meaning of RNOs: The adjective 
'recursive' applies to 'neighbourhood', just as 'local' from 
LNO applies to 'neighbourhood'. Therefore, RNOs are 
recursive in the spatial sense, and not necessarily in the 
temporal sense. 

With: input image X, output image Y, 
position vector k and time n, 

then: 
Y[n] = f(X[n],Y[n-~]), 
describes a temporal recursive system, 

and 
YRI q f(X[k],Y[k-i]), 
descnbes a spat~al recursive system. 

The temporal system needs a delay element D, so that the 
output signal Y[n] can be calculated from the output signal 
at time n-1. In the spatial system, however, the output 
signal Y[k] is calculated using the output signal at position 
k- I .  

6.1 Examples of RNOs. 

Some RNO's are: 

The inverse convolution (GIO). 
The relative muximum minimum (G10) (Haralick 198 1). 
The recursive median and the maximum / minimum 
median root (G10) (Arce & Crinon 1984; Dohler 1989; 
Komen 1990) . 
Image dithering (G10) (Vossepoel 1989) 
The distance transform (00) (Rosenfeld & Pfalz 1968). 

The signed euclidian distance transform (00) 
(Danielsson 1980). 
t he grey weighted distance tranform ( 0 0 )  (Yokoi et al. 
1981). 
The constrained distance transform (GIO), (Dorst & 
Verbeek 1986). 
The A* al~orithm (G10) (Verwer et al. 1989). 
The ~malikst ~ n c h s i n i  ~egu lar  Polygon (00) (Komen 
1990a). 
~keletonization (00)  (Van Vliet and Venver 1987). 
Object selection or object labeling (00). 

6.2 Features of RNOs. 

The aim of the RNO is to find a solution which results in a 
stable output image Y at all points at the same time. 
A few observations can be made: 

The function f may be applied to a point in Y more than 
once, so that calculated pixel values are used in the 
calculation of a new pixel value. 
It may not be possible to find a final stable image Y. 
It may be possible to find different stable images Y. 

Updating methods define the order in which points are 
updated to calculate a specific RNO. These methods may 
influence the speed of calculation and may result in different 
solutions for some RNOs. The updating methods are: 

Deterministic updating: Simultaneous, raster scan, 
meander scan, leftlright spiral, row/column, chessboard, 
Successive Over Relaxation (SOR). 
Data dependent updating: recursive or depth first, 
queuing or breath first, bucket-queue. 
Stochastic updating: Asynchronous, Poisson. 

Combinations of these groups are also possible. 

The data-dependent updating methods perform one or more 
orders in magnitude better than the deterministic ones for 
most RNOs and from these methods, bucket-queue 
updating performs the best. The parallelisms in the 
SPA, LPA and PL can however not be used to implement 
any of the data dependent techniques directly. Though a 
queue updating method on the scanning level combined 
with a deterministic method on the array level can be used. 
A performance comparison for increasing number of PEs 
has been done between the three architectures using their 
respectively best updating methods. For the PL this is the 
serial updating method and for the LPA and the SPA the 
combined updating method. Whether or not data input time 
is taken into account, the SPA performs best in 
almost all cases. There are in general no large 
differences in performance between the LPA and the PL for 
the same number of PEs. (Komen 1990a). 

7. Support for RNOs from the 
architectures. 

7.1 RNO support in a Pipeline. 

As an example of a pipeline that is able to perform RNOs 
using raster scan updating the Cellular Logic Processing 
Element will be discussed (Jonker et.al. 1985; Kraaijveld et 
al 1986; Jonker et al. 1988). The CLPE is able to perform 
3x3 cellular logic operations on binary images. Figure 4 
shows the datapath of the CLPE. The heart of the CLPE is 
formed by a writeable logic array (WLA) and a majority 
vote unit (MVU). The CLPE can be down-loaded with 
several sets of hit-or-miss masks, each set being able to 
perform one Cellular Logic Operation. Both the LNO and 
RNO form are supported, as shows the shiftregister section 
for the recursion in figure 4. 
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Figure 4. Internal datapath of the CLPE. 

For the CLPE, Serra's definition of a Hit or Miss 
transformation (Serra 1982) was extended. It is now 
informally defined as: 
Iffor any pixel in an image its neighbourhoodfits a given 
mask from a mask set, the pixel is set to one. Each mask 
may be filled with ones ( I ) ,  zeroes (0) and don't cares ( 0 ) .  

For the recursive cellular logic operations (RNOs), not only 
the pixels from the normal 3x3 neighbourhood should be 
specified, but also the pixels from the recursive 
neighbourhood. The cellular logic operation is selected by 
choosing a set of masks (WLA) or majority-number ( M W )  
using an instruction register of the CLPE. New celular logic 
operations can also be down-loaded, during processing. 
When frame recirculation is used, the CLPE is able to 
perform the raster scan from top-left to bottom right in all 
odd iterations and from bottom-right to top left in all even 
iterations. This yields a better performance e.g. by thinnig. 

Figure 5. The mask-set for the 4-connected 
propagation. The shaded pixels are taken from the 

recursive neighbourhood. 

Figure 5 gives the mask set of the 4 connected or cityblock 
propagation, usable for object selection. Figure 6 gives the 
the mask set of a 4-connected chessboard metric skeleton. 
Note that the first mask is the mask for the erosion of an 8 
connected object contour. 

The Writeable Logic Array was derived from the 
Programmable Logic Array (PLA). Specifying a binary 
rank filter using masks would involve to much masks, 
hence a separate rank filter unit based on a tally circuit was 
added. A small chip surface compared with the WLA. 
The CLPE was theoretically modified to make a comparison 
with the CLIP-4 PE possible (Duin and Jonker 1988). 
Finally a pipeline able to perform grey-value RNOs based 
on this modified model was designed (Komen and Duin 
1989; Jonker et al. 1989). A 12 Mhz test version of the chip 
came out in 1988, the final version still sticks in the silicon 
foundry. 

7 . 2  A RNO in a combined LPA / PL approach. 

A second try-out of RNOs on special architectures was the 
implementation of the Distance Transform on a data-flow 
test system based on the NEC IMPP data-flow processor 
chips (Iwashita et al. 1986, Fujita et al. 1990). The test 
system came straight from the data-sheets (figure 7). Up to 
8 IMPP chips can be connected to each other by a token 
ring, and through a (MAGIC) interface chip to the image 
memory. Through the ring the IMPPs can send data tokens 
to each other. They can also send memory address tokens 
to the image memory, which returns pixel data tokens. 

The IMPPs are asynchronously connected in the ring and 
have 110 queues. The token ring approach made it possible 
to simulate variaus architectures. The pipeline form is 
obvious, but also a LPA structure can, somewhat more 
cumbersome, be simulated if each IMPP only addresses the 
memory for its own row or column and its neighbour rows 
or columns. Although all processors operate on the global 
memory through the fast ring it remains a bottleneck for 
LPA and SPA solutions. The IMPPs themselves have 
limited storage capacity for constants. Most data structures, 
like a histogram need to be stored in the image memory. 
As an example of an RNO a (5.7) Distance Transform of a 
2562 image was implemented on the system (Borgefors 
1984). Figure 8 shows the masks that were used for the 
downward and upward scan. Note that only the central 
pixel is taken from the normal neighbourhood, the other 
pixels from the recursive neighbourhood. 
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Figure 8. Filter constants for the (5,7) Distance 
Fieure 6. Mask set for the 4-connected skeleton Transform 
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basea on 8 connected erosion: 1 erosion mask (8C). 
6 break-pixel masks (4C), 1 single-pixel mask, 

4 end-pixel masks (4C). 

See for a rather similar approach: (Maragos 1987). 
As a mask set is defined as the logic OR of the masks. the 
set can be written as a boolean equation in canonical form. 

w0Ic 
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The basic idea of the algorithm was that each IMPP 
processes a line of the image, passing information of 
already processed pixels to the IMPP that processes the 
next line in the image. Figure 9 shows the principle for the 
downward scan. The values of the shaded pixels have 
already been calculated. The processors 1 to 4 calculate a 
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Figure 7. A data-flow / token ring test system. 

Dm' IMPP- Dm'- 

-.- 
----  

IMW- 



Figure 9. Using 4 PEs for the distance transform. 

Each processor reads its own original values from memory. 
In the same way each processor writes its own results to the 
memory. 
Concluding, by using a combined LPA - PL approach on 
an image larger than the array size the distance transform 
could be implemented on this ring architecture. However, 
the maximum speed was dictated by the memory acces. 

8. Wave front operations and special 
architectures. 

In image processing, a large part of the operations only 
apply on the objects or blobs in the image. Hence it would 
be very advantageous if the only pixels to be processed 
were the pixels of these objects or blobs. Moreover, in 
most of these operations the only pixels to be processed are 
the pixels on the border of the blobs or objects. Examples 
are erosions, dilations, skeletonization, labelling, distance 
transform, region growing. Hence possible parallelism is 
found in the independent regions, blobs or objects that can 
be processed by different processors. If on all border pixels 
of the region the same operation is performed even all 
border pixels might be processed on different processing 
elements. 
Therefore the concept Region Parallelism (Pr) is introduced 
as: 

The number of different regions (e.g. objects) that can 
be processed in parallel. 

And the definition of Spatial parallelism (Ps) is extended to: 
The number of different pixels of an image or region that 
can be processed in parallel. 

The conclusions in chapter 6 were, that writing an operation 
as an RNO is an efficient way to perform an object 
operation and that almost none of the existing architectures 
have a hardware ~ossibilitv to enable data deoendent 
updating. 

8.1 A special architecture for graph searching. 

In an attempt to realize an architecture supporting data 
dependent update techniques a simulation of a special 
architecture for a uniform cost algorithm (A*) was done 
(Jonker et a1.1988). 
The A*-algorithm falls into the class of graph search 
problems. The algorithm starts in one image point and 
spreads out in a wave front over the image, similar as with 
the distance transform (Verwer 1989). Note that the 
necessity for a special architecture came from the fact that 
the algorithm was applied on a robot collision avoidance 
problem and the interest in collision avoidance originated 
from the research on distance transforms. With a 6 axis 
robot that is supposed not to collide with objects in 3D 
space even a 6D problem and thus a 6D image arises. The 
points in the N-dimensional image are the nodes of the 
graph. All nodes are locally connected, except for obstacle 
points, which are not connected at all. See figure 10 where 
N=2 and the nodes are 8 connected. 
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Figure 10. The graph of a 2D path finding process 
after a few node expansions. The numbers attached to 
the nodes are evaluation values as computed by A*. 
The diagonal transition cost is 7, the horizontal and 
vertical transition costs are 5. 

In our application A* degenerated into a uniform cost 
algorithm. Circular waves of equal cost propagated from 
both start and goal node in all directions. The front 
generation stopped when both fronts touched.The 
~arallelism in this case can be found in the two inde~endent 
kronts and the pixels on the border of the fronts. 
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From the IMPP experiment it was learned that: 
a) Each PE should have its own memory coupled with a 

Processor Mapping Function (PMF) onto the problem 
space in a global memory. 

b) The token ring appeared to be a good solution for a fast 
autonomous data communication between the PEs. 

As mapping function a crinkle-wise approach was taken, so 
each PE operated on a sub-sampled version of the problem 
space. Each PE contained a bucket queue (comparable with 
an input queue with bucket sort). The PE pruned incoming 
nodes, evaluated nodes and generated successors. The 
successors were marked with their address and front-code 
(start or goal) and put onto the data network. A hyper-ring 
was proposed. Each PE in the ring automatically absorbed 
the tokens that were 'his' according to the mapping function 
and stored it in his input (bucket) queue. 
The effect was that pixels from both the start- and the goal 
front were processed by the same PEs. Due to the crinkle- 
wise mapping a uniform load on all PEs was obtained. 
Note that using tMs growing wave-front approach the delay 
in the data network is of low importance for the speed of 
the system. 

8.2 Towards an  architecture for region growing. 

With the A* architecture as sketched above all PEs operated 
on all border pixels of both wave fronts. There was no need 
for context switching, the two fronts were similar and the 
operations on the front toke place synchronously. 
A rather similar, but yet different wave front problem is the 
region growing problem for 2.5D images. In this problem 
first and second order surfaces are fit onto a 2.5D 
'landscape' (Besl and Jain 1986, 1988). In this approach all 
the points on the border of a region are tested with a test 
criterion and added to the region if the test holds. If the 
whole border has been processed a set of equations is 
solved to update the surface parameters. The procedure 
continues until no more points can be added to the region. 
The region growing starts from suitable seeds and a number 
of wave-fronts may occur. 
Though the operations involved are equal for each wave 
front, in this case however, each region has its own specific 
data to maintain. A structure with crinkle-wise mapping as 
in the A* problem is not usable here. Distributing the new 
results over all other PEs involved in a certain front would 
mean a severe overhead for those PEs. Moreover all PEs 
would have to switch context for almost every pixel from 
their queue if each PE were involved in all fronts. 
window mapping would be better. Then each PE takes care 



of its own window growing its own seeds. If a region 
tends to cross a border it could stop growing and leave the 
merging over borders to the global region merging step for 
small regions that was needed anyway. Or it could put the 
border pixels via a hyper-ring network as a seed onto the 
queue of the neighbouring PE, together with the surface 
data. Sometimes, some of the initial windows are SO full of 
detail that the PE cannot gain speed in its fronts in its 
original window. Other PEs on the other hand might have 
finished their window. In that case it would be better if a 
reshuffling of windows could be arranged. This approach 
would mean the introduction of a dynamic processor 
mapping function. 

9. Conclusions. 

Low-level and intermediate level algorithms are often 
heavily mixed. Consequently novel architectures should 
smoothly support both low-level as well as intermediate 
level image processing. 
Floating point support is desirable for many 2.5D and 
3D tasks. 
For 3D image processing the idea to attach a PE to each 
voxel must be abandoned. Processor Mapping Functions 
should specify the division of pixels over PEs. 
Due to the competition with super workstations it is 
desirable that the architecture sumorts high level 
languages (C), the programming of'hser defiied data 
structures and the random accessibility of all pixels. 
The wish to attach groups of PEs to different concurre~~t 
tasks points to a more MlMD form of local autonomy. 
Pyramidal structures can be fruitfully simulated on 
Square Processor Arrays (SPAs). The use of pyramidal 
data structures on SPAs increases its efficiency. 
Expressing Global Operations (GOs) and Object 
Operations ( 0 0 s )  in a Recursive Neighbourhood (RNO) 
form is very efficient. 
LPAs perform better than SPAs for  Local 
Neighbourhood Operations. Pipelines (PLs) perform the 
worse. SPAs  perform better fo r  Recursive 
Neighbourhood Operations than LPAs or PLs. 
Most image processing architectures have no special 
provisions for recursion. 
Data dependent updating using queues or bucket -queues 
yields wave front processing. To  enable wave front 
processing each PE should preferably have hardware 
facilities for input queues or input bucket structures. 
To  avoid memory bottlenecks each PE should work only 
on its own piece of image memory. The memory access 
should differ from the data network. A mapping function 
such as crinkle-wise o r  window-wise depicts the global 
image memory onto the memories of the PEs. 
Each wave front problem has its own solutions. Hence 
the mapping functions should be programmable. The 
possibilities of dynamic Processor Mapping Functions 
needs investigation. 
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