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ABSTRACT 

For realtime pattern classification applications 
(e.g. realtime image segmentation), the number of 
usable pattern classification algorithms is limited by 
the feasibility of high-speed hardware 
implementation. This paper describes a pattern 
classifier and associated hardware architecture and 
training algorithms. The classifier has both a feasible 
hardware implementation and other desirable 
properties not normally found in statistical classifiers. 
In addition to the classification/training algorithms 
and hardware architecture, the paper discusses the 
application of the technique to the problem of image 
segmentation. Results from segmenting images are 
included. 

The scheme described has two major aspects: (1) 
The classifier itself, which is a look-up-table (LUT) 
implemented as a 2"-tree, which is a hierarchical data 
structure that corresponds to a recursive 
decomposition of feature space and (2) Training 
schemes, specific to the 2" structure, by which the 
classification tree is constructed. These training 
schemes may be used as techniques for machine 
learning. Two of the training algorithms have the 
following important properties: they are 
non-parametric and therefore independent of any 
particular probability model (e.g. Gaussian); they can 
handle any shaped decision regions in feature space; 
and They are consistent in the sense that for large 
training data sets they produce a classifier that 
approaches the ideal Bayes classifier. These 
attributes make this architecture/algorithm 
combination an excellent alternative to artificial 
neural networks, a class of classifiers in which there 
has been much interest, of late. The training 
algorithms also include an interesting application of 
the Minimum Description Length principle (MDL). 
It is used in a tree pruning algorithm that produces 
trees that are both significantly smaller and, at the 
same time, have better classification performance (i.e. 
lower error rates) than unpruned trees. 

INTRODUCTION 

The following are what we consider to be the 
contributions of the work described in this paper. A 
more detailed treatment of this work can be found in 
[ll.  
1. The use of the 2"-tree as a model/architecture 

for classification. 

2. Four classifier training algorithms. Only one will 
be described here. 

3. Experimental verification of the effectiveness of 
these algorithms. 

4. An outline of possible hardware 
implementations of the 2"-tree. 

5. A proof that the G L F  (and certain others) 
algorithm produces classifiers that become the 
Bayes classifier for large (N + 00) training sets. 

In what follows we assume that objects (e.g. 
patterns) are being classified by performing a set of 
feature measurements thus forming a feature vector ( 
x = {x,)) corresponding to the object. These feature 
vectors identify points in feature space. The feature 
space is either explicitly or implicitly segmented into 
various regions corresponding to the various classes 
of objects. The task of the classifier, in this model, is 
to identify the region containing the feature vector 
and thereby label it (the vector), while the task of the 
training procedure is to perform the segmentation of 
feature space and represent it in a form usable by the 
classifier. To simplify the language below we will 
refer to the process of classifying feature vectors. 

PREVIOUS RELATED WORK 

While other tree-based classifiers have been proposed 
and studied (see 12, 3,431) it appears that the 2"-tree 
has never been proposed as an architecture for a 
pattern classifier. Omhohundro[S] does suggest it as 
a data structure for storing training data to be used 

algorithms such as K nearest neighbor[6]. The 
;'-tree has been used as a data structure for other 
problems, however. The most common case being 
n = 2, commonly referred to as a quadtree.. which 
has been used in many image processing and analysis 
applications as a data structure for representing an 



image. Samet[7] has reviewed such quadtree 
applications extensively. His review also mentions 
some avvlications for n > 2. None of these resemble 
those p;oposed here, however. Approaches to using 
criteria based on the Minimum Descrivtion Lenath 
(MDL) principle[ll, 123 to prune genkral decisron 
trees have been described in [8,9. 10.1 11. We have 
adapted and extended these approaches to cover the 
case of 2"-trees. 

THE CLASSIFICATION TREE 

In many pattern classification applications (and 
especially those requiring high throughput) feature 
values are represented as integers whose range is 
determined by the wordsize of the computational 
device being used and is therefore a power of two. 
Thus the feature space is discrete and occu ies a 
finite n-dimensional hypercube of side length 2 " P e  
classification tree used in this invention corresponds 
to the following recursive decomposition of that 
feature space. Each node in the tree is either a leaf or 
an interior node (decision node) with 2n children. The 
root node of the tree corresponds to the entire feature 
space and the set of all its children corresponds to the 
complete feature space divided into 2" non-overlaping 
equally-sized hypercubes, each 2m-1 on a side and 
each of their children corresponds to a hypercube of 
size 2m-2 and so on. The tree may be diagrammed in 
the standard 2-dimensional form as follows. First an 
arbitrary ordering of the features is selected. This 
ordering is indicated by the subscripts: {x,, x,, ...), etc. 
The branches originating at  the root node are then 
labeled by the high order bits of the features. Thus 
the left most branch would correspond to all feature 
high-order bits being 0 and the next one to the right 
would correspond to only the n-th feature having its 
high-order bit equal bit equal to 1 and so on with the 
right-most branch corresponding to all high-order bits 
being 1's. At the next level (level 1) the next to the 
highest order bits are tested and so on with low order 
bits being tested at  m - 1 level nodes, all m-th level 
nodes being leaves. For n = 2 the tree takes the form 
of the well-known quadtree data structure. 

When the tree is ready to be used for classification 
(i.e. it has been "trained") the leaves contain class 
labels. A feature vector is classified by searching 
down the tree accessing smaller and smaller cells of 
feature space that contain the feature vector until a 
leaf is reached. The class label stored at  that leaf is 
then assigned to the vector in question. 

TRAINING ALGORITHMS 

Straighfforward LUT programming (SLP): In this 
case any classifier training scheme can be used. It is 
assumed that a classifier has been developed and 
exists in some form that produces desired (or at least 
acceptable) class assignments, but it cannot be used 
in practical applications due to any or all of cost, 
execution time or memory requirement. In this case, 
this classifier will be used to program the 2"-tree, 
which will then be used to perform the actual 
classification. Denote this classifier by y(x). The 

Zn-tree is programmed using y(x) as follows. In this 
procedure every cell in the discrete feature space is 
visited. These cells are processed in an order 
equivalent to representing the entire feature s ace 
with a complete 2"-tree. In this tree all leaves (2' of 
them) will be m-th level nodes and all m-th level 
nodes will be leaves. The total tree consists of 
(2n(m + 1) - 1)/(2" - 1) nodes. This abstract tree is then 
processed recursively in post order. While this 
algorithm can always be used in principle, it becomes 
impractical for high-dimensional feature spaces 
because of the time required to generate the tree. 

Monte Carlo Schemes: In cases where one desires 
to program the tree with a definite classifier, but the 
size of the feature space prohibits use of the SLP 
algorithm, a Monte Carlo approach may be used, 
where synthetic training vectors are generated using 
the desired classifier. The training vectors 
so-produced are then used as input to a direct or 
"learning" algorithm (described below). 

TREE "LEARNING" ALGORITHMS: GROW 
LEAVES FIRST (GLF) 

Only the conceptually simplest training algorithm will 
be described here. Others are described in [I]. This 
algorithm consists of a single growing phase followed 
by a pruning phase. In the growing phase the 
complete path to the bottom-level leaf corresponding 
to each training vector is created. Class histograms 
are accumulated for the bottom-level leaves during 
this process. The tree is then pruned recursively with 
leaves whose siblings all have the same class as theirs 
being pruned, creating a new leaf (i.e. the former 
parent). The new leafs class histogram is the sum of 
all the previous children's histograms. 

AAer formation of the initial tree, but before 
pruning, the tree contains the joint histogram H(c, x) 
and the class returned by this tree (or its pruned 
counterpart) for a given feature vector x during 
classification will be the class for which H is 
maximum, if x was among the training vectors. If x 
was not among the training vectors, its class is 
determined by association (via the pruned tree) with 
other vectors within the quad corresponding to the 
leaf of the pruned tree that corresponds to x. This 
classification has a "K nearest neighbor" flavor, but 
the neighbors within some quad containing the 
feature vector are used rather than the K nearest. via 
Euclidean distance, grid distance or some other 
metric. Another way to view this is to say that 
H(c, x) is always used, but that the features are 
measured to different numbers of bits of precision in 
different regions of feature space. 

A practical prablem in using the GLF algorithm is 
that it may (for high dimensional feature spaces and 
certain class structures) produce very large unpruned 
trees. A technique to significantly reduce this 
problem is to sort the training data, prior to training, 
into a sequence corresponding to a post-order 
traversal of the tree corresponding to the entire 
feature space. This will allow pruning to take place in 
an on-going fashion. Other training algorithms that 



allow memory requirement to be traded against 
execution time are described in [I]. 

Pruning the tree: After the class histograms are 
used to set the appropriate node classes, the tree is 
pruned. This is done by processing the tree in 
postorder. In this process if all the children of a 
node are leaves of the same class, those children are 
eliminated from the tree and the node is converted to 
a leaf of the appropriate class. This is carried out 
recursively so that a node with several layers of 
structure under it may, in principle, be eliminated. 

MDL-based pruning: Due to the high number of 
degrees of freedom inherent in the 2"-tree classifier, a 
large number of training vectors would be required to 
produce a classifier that did not suffer from 
over-fitting the training data. To  significantly reduce 
this requirement we have developed an 
information-theoretic pruning algorithm. This 
technique is an extension of that proposed by 
Quinlan and RivestC81. It is based on the Minimum 
Description Length principle (MDL), proposed by 
Rissanen[lZ] as a measure of the goodness of 
models for describing data. In this technique the 
classification tree produced by the 2"-tree training 
algorithms is considered to be a model for the class 
assignments of the training data conditioned on the 
associated feature vectors. A scheme is proposed for 
encoding the data using this model. This scheme 
consists of a code for the model (the 2"-tree in this 
case) and a code for the class assignments 
conditioned on the model and the feature vectors. 
The latter consists of an  encoding of the correct class 
codes for those training vectors misclassified by the 2" 
classification tree. Associated with this encoding 
scheme is a total code length, consisting of two parts 
corresponding to the two components j;st mentioned. 
This codelen~th may be considered to be a measure 
of the com$exity of the data and the model that 
produces the lowest complexity (code length) will be 
sought. This complexity measure is used in an 
algorithm where the initial tree is pruned, until the 
total code length begins to increase. 

The importance of feature scaling: Smaller 
classification trees and better classifier performance 
will be obtained by scaling the feature values to fill 
the available dynamic range. For example, if the 
values of some feature ranging between 0 and 32 are 
encoded in 8 bit bytes, the high order 5 bits should be 
used rather than the low order 5. A longer 
discussion of these effects appears in [I]. 

CLASSIFICATION RESULTS 

The GLF algorithm and the resulting classifiers were 
used to segment multi-band images. Two spectral 
bands were used - red and blue - and eight features 
encoded to five bits each. These features are local 
statistics or operators computed over the square 
windows up to 7x7 pixels in size. These operators 
include things like local min, max and mean (see [l] 
for details. 

In each of several cases the classifiers were trained 
on one image; then two images were segmented: the 
training image and another image acquired under the 
same conditions. Quite good segmentation results 
were obtained. Error statistics and sample images 
and segmentation results are presented in [I]. 

SOFTWARE AND HARDWARE 
IMPLEMENTATIONS 

Software: The algorithms described have been 
implemented in software, using the C language 
running under AIX on an IBM RS-6000 workstation 
with 48Mbytes of memory. All algorithms implement 
the tree structure as a linked list. The structure of the 
tree is the same for both training and classification, 
but much more information is stored at  each node 
during training. In both cases each node contains a 
flag indicating whether the node is a leaf or a 
decision node. a class label and decision nodes 
contain a list of pointers to their children. During 
training, a class histogram is also stored at each 
node. 

Hardware: Two possible hardware 
implementations are proposed here. The first will be 
referred to as D/E for "decoder/encoderR. In this 
scheme each leaf in the tree has a column of AND 
gates in the decoder array. The idea here is that each 
leaf has a unique signature and the encoding of the 
upper leaves (fewer bits) can never be a prefix of the 
encoding of some lower level leaf. All the bits (for 
1's) or inverted bits (for 0's) corresponding to a given 
leaf are ANDed together to produce one of the 
decoder outputs. Each of these outputs is an input to 
a very large encoder that produces a code 
corresponding to a simple enumeration of the leaves, 
requiring log,(maximum no. leaves) bits. This 
encoded leaf index is then the input to the final stage 
of the classifier, which is a LUT, containing the class 
assignments of all the leaves. Such a scheme could be 
implemented using a programmable logic array 
(PLA), for example. 

The second hardware implementation is a kind of 
hardware linked list where there is a LUT RAM for 
every level in the tree (though the first few upper 
levels can be combined). In this scheme every node 
in the tree (even those whose class is determined by 
inheritance) has an entry in the LUT corresponding 
to its level. The entry contains a flag indicating leaf or 
decision node, the class code (for leaves) or a pointer 
to the first child (for decision nodes) in the next level 
LUT. These last two items can obviously occupy the 
same space. 

The first LUT corresponds to level one and 
contains an entry for every node at that level (one 
node trees are precluded). For levels below that, only 
the nodes that exist at that level will be present. The 
children of a given node are grouped together and 
the groups are listed one after the other 
corresponding to the ordering of the parent nodes. 
An adder at the input to each level combines the 
address of the first child from the previous level (i.e. 
the parent) with the bits being tested at this level to 



determine the node address at  this level and so on, 
down the tree. The class code bits (same as at  least 
some of the address bits) from each level are also 
routed to a multiplexor where the leaf status bits 
from all levels are used to select the class code from 
the highest level node for which "leaf" is asserted. To 
achieve high throughput, results from the various 
stages will be latched and clocked through the LUT 
array in pipeline fashion. Such details are omitted 
here. however. 

DISCUSSION 

Advantages and Disadvantages: The following is a 
list of the advantages of this approach over many 
others. Both this list and the list of disadvantages 
below it focus on the GLF training algorithm. 
Though some comments obviously refer to the tree 
architecture in general. 

1. The classifier can handle any shape decision 
surfaces and any feature vector distributions ( 
P(x  1.9). 

2. No prior knowledge about the shape of the 
distributions is required. This coupled with (1) 
makes 2"-trees an excellent approach in 
applications where an automatically trainable 
classifier is required. 

3. Realtime hardware implementation is feasible. 

4. The effect of the number of classes is minor 
compared with other approaches where each 
class has a separate discriminant function. 

5. The G L F  algorithms (as well as others 
described in [I]) produces classifiers that 
become the Bayes classifier as N + 00. 

The following is a list of disadvantages. 

1. In certain applications this approach will require 
much more memory for the classification and/or 
training process than some other approaches. 
For example, if a Gaussian classifier performs 
adequately in a certain application. it will 
certainly take significantly less storage to 
implement it as compared with the associated 
2"-tree. On the other hand, the tree may execute 
faster during classification in software 
implementations. 

2. A slight shift in the position of a decision 
boundary may cause a large increase (or 
decrease) in tree size in certain cases. This is an 
artifact of the 2"-tree structure and should not be 
a problem as long as the computing resources 
available are adequate to handle the worst case. 
Also, such cases are somewhat pathological. For 
example, such large changes won't occur for 
complicated decision boundaries. 

3. In cases where limited training data is available 
and there is inherent confusion between classes, 
the high number of degrees of freedom available 
in the 2"-tree may result in overtraining (i.e. so 

called "fitting the noise") effects. It seems that it 
should be possible to develop an information 
theoretic pruning technique to handle this, 
however. See [8]. for example. 

Feasibility of Hardware Implementation: For the 
examples presented in the e:perimental results section 
above the tree sizes (- 10 nodes) make hardware 
implemenption clearly feasible. For larger training 
sets (- 10 vectors) and more bits per feature (say 8) 
the trees will be larger, but they are bounded in size 
by a number proportional to the number of training 
vectors and, as shown in [I], above a certain N, the 
tree structure stops changing. With the state of the art 
in memory technology it seems likely that an 
implementation capable of handling many practical 
applications is feasible. 
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