
MVA'SO IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

2"-~ree Classifiers and Realtime Image Segmentation

Byron E. Dom and David Steele

IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, California 95120-6099

ABSTRACT

For realtime pattern classification applications
(e.g. realtime image segmentation), the number of
usable pattern classification algorithms is limited by
the feasibility of high-speed hardware
implementation. This paper describes a pattern
classifier and associated hardware architecture and
training algorithms. The classifier has both a feasible
hardware implementation and other desirable
properties not normally found in statistical classifiers.
In addition to the classification/training algorithms
and hardware architecture, the paper discusses the
application of the technique to the problem of image
segmentation. Results from segmenting images are
included.

The scheme described has two major aspects: (1)
The classifier itself, which is a look-up-table (LUT)
implemented as a 2"-tree, which is a hierarchical data
structure that corresponds to a recursive
decomposition of feature space and (2) Training
schemes, specific to the 2" structure, by which the
classification tree is constructed. These training
schemes may be used as techniques for machine
learning. Two of the training algorithms have the
following important properties: they are
non-parametric and therefore independent of any
particular probability model (e.g. Gaussian); they can
handle any shaped decision regions in feature space;
and They are consistent in the sense that for large
training data sets they produce a classifier that
approaches the ideal Bayes classifier. These
attributes make this architecture/algorithm
combination an excellent alternative to artificial
neural networks, a class of classifiers in which there
has been much interest, of late. The training
algorithms also include an interesting application of
the Minimum Description Length principle (MDL).
It is used in a tree pruning algorithm that produces
trees that are both significantly smaller and, at the
same time, have better classification performance (i.e.
lower error rates) than unpruned trees.

INTRODUCTION

The following are what we consider to be the
contributions of the work described in this paper. A
more detailed treatment of this work can be found in
[ll.
1. The use of the 2"-tree as a model/architecture

for classification.

2. Four classifier training algorithms. Only one will
be described here.

3. Experimental verification of the effectiveness of
these algorithms.

4. An outline of possible hardware
implementations of the 2"-tree.

5. A proof that the G L F (and certain others)
algorithm produces classifiers that become the
Bayes classifier for large (N + 00) training sets.

In what follows we assume that objects (e.g.
patterns) are being classified by performing a set of
feature measurements thus forming a feature vector (
x = {x,)) corresponding to the object. These feature
vectors identify points in feature space. The feature
space is either explicitly or implicitly segmented into
various regions corresponding to the various classes
of objects. The task of the classifier, in this model, is
to identify the region containing the feature vector
and thereby label it (the vector), while the task of the
training procedure is to perform the segmentation of
feature space and represent it in a form usable by the
classifier. To simplify the language below we will
refer to the process of classifying feature vectors.

PREVIOUS RELATED WORK

While other tree-based classifiers have been proposed
and studied (see 12, 3,431) it appears that the 2"-tree
has never been proposed as an architecture for a
pattern classifier. Omhohundro[S] does suggest it as
a data structure for storing training data to be used

algorithms such as K nearest neighbor[6]. The
;'-tree has been used as a data structure for other
problems, however. The most common case being
n = 2, commonly referred to as a quadtree.. which
has been used in many image processing and analysis
applications as a data structure for representing an

image. Samet[7] has reviewed such quadtree
applications extensively. His review also mentions
some avvlications for n > 2. None of these resemble
those p;oposed here, however. Approaches to using
criteria based on the Minimum Descrivtion Lenath
(MDL) principle[ll, 123 to prune genkral decisron
trees have been described in [8,9. 10.1 11. We have
adapted and extended these approaches to cover the
case of 2"-trees.

THE CLASSIFICATION TREE

In many pattern classification applications (and
especially those requiring high throughput) feature
values are represented as integers whose range is
determined by the wordsize of the computational
device being used and is therefore a power of two.
Thus the feature space is discrete and occu ies a
finite n-dimensional hypercube of side length 2 " P e
classification tree used in this invention corresponds
to the following recursive decomposition of that
feature space. Each node in the tree is either a leaf or
an interior node (decision node) with 2n children. The
root node of the tree corresponds to the entire feature
space and the set of all its children corresponds to the
complete feature space divided into 2" non-overlaping
equally-sized hypercubes, each 2m-1 on a side and
each of their children corresponds to a hypercube of
size 2m-2 and so on. The tree may be diagrammed in
the standard 2-dimensional form as follows. First an
arbitrary ordering of the features is selected. This
ordering is indicated by the subscripts: {x,, x,, ...), etc.
The branches originating at the root node are then
labeled by the high order bits of the features. Thus
the left most branch would correspond to all feature
high-order bits being 0 and the next one to the right
would correspond to only the n-th feature having its
high-order bit equal bit equal to 1 and so on with the
right-most branch corresponding to all high-order bits
being 1's. At the next level (level 1) the next to the
highest order bits are tested and so on with low order
bits being tested at m - 1 level nodes, all m-th level
nodes being leaves. For n = 2 the tree takes the form
of the well-known quadtree data structure.

When the tree is ready to be used for classification
(i.e. it has been "trained") the leaves contain class
labels. A feature vector is classified by searching
down the tree accessing smaller and smaller cells of
feature space that contain the feature vector until a
leaf is reached. The class label stored at that leaf is
then assigned to the vector in question.

TRAINING ALGORITHMS

Straighfforward LUT programming (SLP): In this
case any classifier training scheme can be used. It is
assumed that a classifier has been developed and
exists in some form that produces desired (or at least
acceptable) class assignments, but it cannot be used
in practical applications due to any or all of cost,
execution time or memory requirement. In this case,
this classifier will be used to program the 2"-tree,
which will then be used to perform the actual
classification. Denote this classifier by y(x). The

Zn-tree is programmed using y(x) as follows. In this
procedure every cell in the discrete feature space is
visited. These cells are processed in an order
equivalent to representing the entire feature s ace
with a complete 2"-tree. In this tree all leaves (2' of
them) will be m-th level nodes and all m-th level
nodes will be leaves. The total tree consists of
(2n(m + 1) - 1)/(2" - 1) nodes. This abstract tree is then
processed recursively in post order. While this
algorithm can always be used in principle, it becomes
impractical for high-dimensional feature spaces
because of the time required to generate the tree.

Monte Carlo Schemes: In cases where one desires
to program the tree with a definite classifier, but the
size of the feature space prohibits use of the SLP
algorithm, a Monte Carlo approach may be used,
where synthetic training vectors are generated using
the desired classifier. The training vectors
so-produced are then used as input to a direct or
"learning" algorithm (described below).

TREE "LEARNING" ALGORITHMS: GROW
LEAVES FIRST (GLF)

Only the conceptually simplest training algorithm will
be described here. Others are described in [I]. This
algorithm consists of a single growing phase followed
by a pruning phase. In the growing phase the
complete path to the bottom-level leaf corresponding
to each training vector is created. Class histograms
are accumulated for the bottom-level leaves during
this process. The tree is then pruned recursively with
leaves whose siblings all have the same class as theirs
being pruned, creating a new leaf (i.e. the former
parent). The new leafs class histogram is the sum of
all the previous children's histograms.

AAer formation of the initial tree, but before
pruning, the tree contains the joint histogram H(c, x)
and the class returned by this tree (or its pruned
counterpart) for a given feature vector x during
classification will be the class for which H is
maximum, if x was among the training vectors. If x
was not among the training vectors, its class is
determined by association (via the pruned tree) with
other vectors within the quad corresponding to the
leaf of the pruned tree that corresponds to x. This
classification has a "K nearest neighbor" flavor, but
the neighbors within some quad containing the
feature vector are used rather than the K nearest. via
Euclidean distance, grid distance or some other
metric. Another way to view this is to say that
H(c, x) is always used, but that the features are
measured to different numbers of bits of precision in
different regions of feature space.

A practical prablem in using the GLF algorithm is
that it may (for high dimensional feature spaces and
certain class structures) produce very large unpruned
trees. A technique to significantly reduce this
problem is to sort the training data, prior to training,
into a sequence corresponding to a post-order
traversal of the tree corresponding to the entire
feature space. This will allow pruning to take place in
an on-going fashion. Other training algorithms that

allow memory requirement to be traded against
execution time are described in [I].

Pruning the tree: After the class histograms are
used to set the appropriate node classes, the tree is
pruned. This is done by processing the tree in
postorder. In this process if all the children of a
node are leaves of the same class, those children are
eliminated from the tree and the node is converted to
a leaf of the appropriate class. This is carried out
recursively so that a node with several layers of
structure under it may, in principle, be eliminated.

MDL-based pruning: Due to the high number of
degrees of freedom inherent in the 2"-tree classifier, a
large number of training vectors would be required to
produce a classifier that did not suffer from
over-fitting the training data. To significantly reduce
this requirement we have developed an
information-theoretic pruning algorithm. This
technique is an extension of that proposed by
Quinlan and RivestC81. It is based on the Minimum
Description Length principle (MDL), proposed by
Rissanen[lZ] as a measure of the goodness of
models for describing data. In this technique the
classification tree produced by the 2"-tree training
algorithms is considered to be a model for the class
assignments of the training data conditioned on the
associated feature vectors. A scheme is proposed for
encoding the data using this model. This scheme
consists of a code for the model (the 2"-tree in this
case) and a code for the class assignments
conditioned on the model and the feature vectors.
The latter consists of an encoding of the correct class
codes for those training vectors misclassified by the 2"
classification tree. Associated with this encoding
scheme is a total code length, consisting of two parts
corresponding to the two components j;st mentioned.
This codelen~th may be considered to be a measure
of the com$exity of the data and the model that
produces the lowest complexity (code length) will be
sought. This complexity measure is used in an
algorithm where the initial tree is pruned, until the
total code length begins to increase.

The importance of feature scaling: Smaller
classification trees and better classifier performance
will be obtained by scaling the feature values to fill
the available dynamic range. For example, if the
values of some feature ranging between 0 and 32 are
encoded in 8 bit bytes, the high order 5 bits should be
used rather than the low order 5. A longer
discussion of these effects appears in [I].

CLASSIFICATION RESULTS

The GLF algorithm and the resulting classifiers were
used to segment multi-band images. Two spectral
bands were used - red and blue - and eight features
encoded to five bits each. These features are local
statistics or operators computed over the square
windows up to 7x7 pixels in size. These operators
include things like local min, max and mean (see [l]
for details.

In each of several cases the classifiers were trained
on one image; then two images were segmented: the
training image and another image acquired under the
same conditions. Quite good segmentation results
were obtained. Error statistics and sample images
and segmentation results are presented in [I].

SOFTWARE AND HARDWARE
IMPLEMENTATIONS

Software: The algorithms described have been
implemented in software, using the C language
running under AIX on an IBM RS-6000 workstation
with 48Mbytes of memory. All algorithms implement
the tree structure as a linked list. The structure of the
tree is the same for both training and classification,
but much more information is stored at each node
during training. In both cases each node contains a
flag indicating whether the node is a leaf or a
decision node. a class label and decision nodes
contain a list of pointers to their children. During
training, a class histogram is also stored at each
node.

Hardware: Two possible hardware
implementations are proposed here. The first will be
referred to as D/E for "decoder/encoderR. In this
scheme each leaf in the tree has a column of AND
gates in the decoder array. The idea here is that each
leaf has a unique signature and the encoding of the
upper leaves (fewer bits) can never be a prefix of the
encoding of some lower level leaf. All the bits (for
1's) or inverted bits (for 0's) corresponding to a given
leaf are ANDed together to produce one of the
decoder outputs. Each of these outputs is an input to
a very large encoder that produces a code
corresponding to a simple enumeration of the leaves,
requiring log,(maximum no. leaves) bits. This
encoded leaf index is then the input to the final stage
of the classifier, which is a LUT, containing the class
assignments of all the leaves. Such a scheme could be
implemented using a programmable logic array
(PLA), for example.

The second hardware implementation is a kind of
hardware linked list where there is a LUT RAM for
every level in the tree (though the first few upper
levels can be combined). In this scheme every node
in the tree (even those whose class is determined by
inheritance) has an entry in the LUT corresponding
to its level. The entry contains a flag indicating leaf or
decision node, the class code (for leaves) or a pointer
to the first child (for decision nodes) in the next level
LUT. These last two items can obviously occupy the
same space.

The first LUT corresponds to level one and
contains an entry for every node at that level (one
node trees are precluded). For levels below that, only
the nodes that exist at that level will be present. The
children of a given node are grouped together and
the groups are listed one after the other
corresponding to the ordering of the parent nodes.
An adder at the input to each level combines the
address of the first child from the previous level (i.e.
the parent) with the bits being tested at this level to

determine the node address at this level and so on,
down the tree. The class code bits (same as at least
some of the address bits) from each level are also
routed to a multiplexor where the leaf status bits
from all levels are used to select the class code from
the highest level node for which "leaf" is asserted. To
achieve high throughput, results from the various
stages will be latched and clocked through the LUT
array in pipeline fashion. Such details are omitted
here. however.

DISCUSSION

Advantages and Disadvantages: The following is a
list of the advantages of this approach over many
others. Both this list and the list of disadvantages
below it focus on the GLF training algorithm.
Though some comments obviously refer to the tree
architecture in general.

1. The classifier can handle any shape decision
surfaces and any feature vector distributions (
P(x 1.9).

2. No prior knowledge about the shape of the
distributions is required. This coupled with (1)
makes 2"-trees an excellent approach in
applications where an automatically trainable
classifier is required.

3. Realtime hardware implementation is feasible.

4. The effect of the number of classes is minor
compared with other approaches where each
class has a separate discriminant function.

5. The G L F algorithms (as well as others
described in [I]) produces classifiers that
become the Bayes classifier as N + 00.

The following is a list of disadvantages.

1. In certain applications this approach will require
much more memory for the classification and/or
training process than some other approaches.
For example, if a Gaussian classifier performs
adequately in a certain application. it will
certainly take significantly less storage to
implement it as compared with the associated
2"-tree. On the other hand, the tree may execute
faster during classification in software
implementations.

2. A slight shift in the position of a decision
boundary may cause a large increase (or
decrease) in tree size in certain cases. This is an
artifact of the 2"-tree structure and should not be
a problem as long as the computing resources
available are adequate to handle the worst case.
Also, such cases are somewhat pathological. For
example, such large changes won't occur for
complicated decision boundaries.

3. In cases where limited training data is available
and there is inherent confusion between classes,
the high number of degrees of freedom available
in the 2"-tree may result in overtraining (i.e. so

called "fitting the noise") effects. It seems that it
should be possible to develop an information
theoretic pruning technique to handle this,
however. See [8]. for example.

Feasibility of Hardware Implementation: For the
examples presented in the e:perimental results section
above the tree sizes (- 10 nodes) make hardware
implemenption clearly feasible. For larger training
sets (- 10 vectors) and more bits per feature (say 8)
the trees will be larger, but they are bounded in size
by a number proportional to the number of training
vectors and, as shown in [I], above a certain N, the
tree structure stops changing. With the state of the art
in memory technology it seems likely that an
implementation capable of handling many practical
applications is feasible.

REFERENCES:

B. Dom and D. Steele, "2"-Tree Classifiers and
Realtime Image Segmentation", IBM Research
Report RJ 7558 (70424) , (July 2, 1990)

L. Brieman, J. Friedman, R. Olshen and C.
Stone, Classifcation and Regression Trees,
Wadsworth International group (Belmont, CA)
(1984)

P. Chou, "Applications of Information Theory
to Pattern Recognition and the Design of
Decision Trees and Trellises", Ph. D. Thesis,
Stanford University (1988)

J.R. Quinlan, "Induction of Decision Trees",
Machine Learning,l, (1 986) 81 -106

S.M. Omohundro, "EWcient Algorithms with
Neural Network Behavior", Complex Sys tem, l ,
(1987) 273-347

T.M. Cover and P.E. Hart, "Nearest Neighbor
Pattern Classification", IEEE Trans Inf Th,
IT-13:l (1967) 21 -27

"The Quadtree and Related Hierarchical Data
Structures", Hanan Samet, Computing Surveys,
16,(2),(6/84)
J.R. Quinlan and R.L. Rivest, "Infemng
Decision Trees Using the Minimum Description
Length Principle", Information and
Computation, 80, (1989) 227-248

J. Rissanen and M. Wax, "Algorithm for
Constructing Tree Structured Classifiers", U.S.
Patent No. 4,719,571, 1/12/88

M. Wax, "Construction of Tree Structured
Classifiers by the MDL Principle", Proc ICASP,
(1990) 2157-2160

J. Rissanen, Stochastic Complexity in Statistical
Inquiry, Vol. 15 in the World Scientific Series in
Computer Science, ISBN 9971-50-859-1 (1989).

J. Rissanen, "Modeling by Shortest Data
Description", Automatics, 14, (1 978) 465-47 1

