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ABSTRACT

In the Shape from Shading methods, an extended
approach named Uni-directional Photometric Flow Fields is
proposed in this paper. The reflectance property of the surface
material is the uniform perfect diffuser, and the light source
produces a uniform parallel beam and the illuminating direc-
tion is varied slightly only in the azimuth direction. The local
surface orientation can be determined from the image density
and its directional derivatives. It is shown that the zenith angle
of the illuminating direction is also determined analytically.
The errors caused by calculating the directional derivatives
using the numerical differences from three input image densi-
ties arc evaluated, and the effectiveness of the shape recon-
struction algorithm is demonstrated by computer simulations.

1. INTRODUCTION

The Shape from Shading formulated by Hom[1],[2] is
one of the useful techniques that reconstruct the shape of the
three-dimesional object from its two-dimensional shading
image. And then, Photometric Stereo is introduced by Wood-
ham[3] to determine the local surface orientation of the object
from three input images under the independent parallel light
beams illumination. In comparison with Photometric Stereo
that requires three large variations of the illuminating direc-
tions, Photometric Flow Fields (PFF) that utilizes the
illuminating directions varied in the small ranges is proposed
by Wollf[4]. The local surface orientaion is determined from
the image density and its directional derivatives obtained by
varying the illuminating direction. In PFF, two degrees of
freedom of the illuminating direction are neccessary, one of
which is varied in the azimuth direction and another of which
is varied in the zenith direction. More simple method named
Uni-directional Photometric Flow Fields (UPFF) is proposed
in this paper, in which the illuminating direction is varied
slightly only in the azimuth direction.

Under the condition that the object surface is the uni-
form perfect diffuser, it is shown that the local surface orien-
tation can be obtained at any surface element from the image
density and its directional derivatives (i.c., the first order and
the second order partial dircectional derivatives of the image
density with respect to the azimuth angle) under the known
illuminating direction, Furthermore, in case that the zenith
angle of the illuminating is unknown, the angle can be deter-
mined from the information of more than two surface cle-
ments.

In the algorithm for determining the surface orientation,
the approximation by the numerical difference method is
adopted in calculating the directional derivatives from meas-
ured image densities. Computer simulations show the evalua-
tion of crrors in calculating those directional derivatives for
the various values in the small changes of the azimuth angle
of the illuminating direction, and show the cffectiveness of
this algorithm by demonstrating the shape reconstruction for
the curved objects.
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2. ILLUMINATING EQUATION

2.1 Coordinate System

Figure 1 shows the coordinate system of UPFF. The
observation system is the orthographic projection, and the
light source produce a uniform parallel beam. Under these
conditions, three vectors at a surface clement are defined as
follows. Unit vector n of the surface element is given by

—Ha .’
n=
Jp!+q:+l.
where p and ¢ are the first order partial derivatives of z with

respect to x and y, i.c., they are the gradient components of a
surface elements.
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Unit vector s is the light source direction veclor defined as
follows, and it is constant at all of the surface elements.
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where o and B are the zenith angle and azimuth angle of
illuminating direction, respectively. Unit vector v is the obser-
vation direction vector, and it is also constant at all of the sur-
face elements.

s = ( sinocosP, sinasinf, cosa )
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Figure 1 Coordinate system of UPFF



2.2 llluminating Equation

For an object with perfectly diffused surface, the image
density D is determined by the following illuminating equa-
tion.

D=C(n-s)
-c ~p sinccosP-q sinosinf+coso
VpPrg ™1
where C is a proportional constant determined by the lumi-
nous intensty of the light sourece, the diaphragm of a camera

lens, and the surface albedo under the assumption that Gamma
property is linear.

3. PRINCIPLE OF UPFF

(5

3.1 Determination of Local Surface Orientation

Let us consider the directional derivatives of the image
density as a function described in the illuminating equation. In
PFF, the illuminating direction is varied slightly both in the
zenith direction and in the azimuth direction. While in UPFF,
the illuminating direction is varied slightly only in the azimuth
direction, as illustrated in Figure 2.

The directional derivatives of image density are derived

as follows:
—c-2 sinasinf-g sinccosf
\I'p !+q LI
D4y = C p sinacosP+q sinasinf
Vpirgtel

aD, (6)
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where
o ., D
ap’ ap?

for abbreviation. Operating Eq.(6)/Eq.(5) and Eq.(7)/Eq.(5),
and then

an = 30“,

a

D, p sinasinB-¢ sinacosp

D —p sinacosB-g sinasinB+cosa ®
9w __ psinacosrgsinosinf ©)
D —p sinocosP-g sinasinB+cosa

are obtained. Equations (8) and (9) are the linear equations of
p and g. By solving the equations (8) and (9) with respect to
p and g, the next relations are obtained.

9Dy sinf+dDy, cos

P = " D+aD,, yana 10
_ 0Dy cosfi+aDy, sinfs i
© (D+0Dy, )tanct an

Therefore, the local surface orientation of an object is derived
analytically from image density and its directional derivatives
corresponding to the surface eclement under the known
illuminating direction.

Figure 2 Illuminating Directions
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3.2 Estimation of o for Unknown Surface Shape
Substituting equations (10) and (11) into illuminating
equation (5) gives

D2 +aD 3 1an’a—C%sin*a = 0 (12)

Replacing u = sina and arranging the equation (12) respect 1o
variable u,

CHP(C*-D*aDy* 2D 3Dy u+3D2+DE =0 (13)

is deduced. Since equation (13) is a quadratic equation of u
and generally there exists two solutions, the value of u can
not be determined uniquely. To get the unique solution, the
additional information of another surface element is intro-
duced. From the condition that the light source produces
parallel beam, the light source direction is constant at all of
the surface elements. Suppose that Dm and Dn are the image
densities corresponding to the different surface elements m
and n , then the unit light source direction vector sm and sn
are the same. Therefore, the following simultancous quadratic
equations of u are obtained, and have the common solution,

C*u?~(C*-D7+3Dy_*-2D,, 0Dy Ju+3Dy_+3Dys_ * = 0 (14)
C*u(C?*-D4aD, *-2D, 0Dy, Ju+dDy *+3Dy > = 0 (15)
From cquations (14) and (15), the solution is given by
3D, _*+3Dyy_*-D, 3Dy, ?

= 16
3D, *-3Dy_*+2D,, 0Dys_—~3D,*+0Dy *~2D, 3Dy, (19

Consequently, the zenith angle of the illuminating direction is
uniquely determined as follows.

o = sin"'Wu

a7

4. COMPUTER SIMULATIONS

4.1 Approximation of Directional Derivatives

In UPFF, the directional derivatives dDb and dDbb have
Lo be calculated by the numerical difference approximation for
all surface elements. For the approximation, finite difference
method such as forward difference and central difference are
considered. In these notation, dDb* and dDbb* mean the
approximated values of dDb and dDbb respectively.
< forward difference approximation >

. Dy-D _ Dy-2Dy+D

dD," =———, D" = 18
b 63 -] (ﬁﬁ)z ( )
< central difference approximation >
. Dy-D, . Dy-2D+D 4
aD," = , Dy = ———— 19
S T @By 1

where Db , D-b and Dbb are the image densities measured in
the azimuth direction B+Ap, B-AP and B+2AP respectively. In
the following notation, the illuminating equation (5) is
represented as D = C®(a, ) then Db , D-b and Dbb are

defined as follows.
D, = CO( a, B+Ap )
D_y =Cd(a, B-AB)
Dy, = C®( o, B+248 )

Therefore, three image densities D , Db and Dbb are required
in the forward difference method, while D , D-b and Db are
required in the central difference method.

(20)



4.2 Evaluation of Errors by Approximation

The effects of errors by approximation are to be
inspected before reviewing the theory of shape reconstruction,
In the simulation, sixty-four surface elements are selected at
the equal intervals on the corresponding image plane from the
hemisphere object whose surface orientations have every com-
bination of directions. Some kinds of the mean square errors
are cvaluated. The result is shown in Figure 3. The mean
square error of dDb is defined as follows and shown as curve
(a) and (c) in Figure 3,

(e .
e, = HE{&Db—BDb )
i=]

and that of dDbb is defined as follows and shown as curve (b)
and (d) in Figure 3,

1)

N
- %z(an,,, 3Dy 22)
i=1

The evaluation by the true values of (p, ) are shown as
(a) and (b), and the cvaluations by the estimated values of (p,
q) calculated from equation (12) and (13) as shown as (¢) and
(d) in Figure 3.

The mean square error of the reconstructed normal vec-
tor is evaluated and shown as curve (e) in Figure 3,

1 N
ey= 2B
i=l

where B is as follows,

(23)

. P Pe !
B= 75 7E T
\fp +q+1 \J'p,2+q,2+l
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Vpirg®l  p,Fig 241
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where pe and ge are the estimated p and ¢ by equation (10)
and (11) respectively.

The mean squarc error of the estimated zenith angle of
illuminating directions is evaluated and shown as curve () in
Figure 3.

N
es= 420, 4)
i=]

where o is the estimated o by equation (17).

From this simulation, it is apparent that the result by the
central difference approximation method is better than that by
the forward differece method. In the central difference approx-
imation, the errors increase with Af decrease less than 0.01[°]
of AP. Generally in the difference approximation, the rounding
error appears at too small variation, In the central difference
method, it is considered that the effect of the rounding error
appears at larger value of AP than that of the forward
diffcrence approximation.

4.3 Shape Reconstruction Algorithm

The algorithm for shape reconstruction is shown in this
section. UPFF reconstruct the surface orientation of the curved
objects according to the following steps by the central
difference approximation.

[Stepl] The values of the proportional constant C is set to be
the maximum intensity value of all of the image pixels. The
azimuth angle B and its angle difference AP of the illuminat-
ing direction are set as known constants.

[Step2] Measure three image densities D, D-b and Db of
curved object, and calculate the directional derivatives dDb
and dDwb using equation (19) for all of the surface elements.
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[Step3] Estimate the zenith angle o of the illuminating direc-
tion if it is unknown by using equation (17) from the informa-
tion of two arbitrary different surface elements.

[Step4] Determine surface orientation (p, g) for all the curved
surface using equations (10) and (11).

(N(d) (b)(c) (@)

-15T Forward Difference Method
B T RN B B AT R
Ap

Figure 3 Evaluation of Errors by Approximatioin
(Object: Hemisphere Lighting: a=307 p=45°)

(a) el: evaluated by true (p. q)

(b) e2: evaluated by true (p, q)

(c) el: evaluated by estimated (p, q)

(d) €2: evaluated by estimated (p, q)

(e) e3: (p. g) estimation error

([) e4: o estimation error

Central Difference Method



4.4 Surface Orientation for Curved Surfaces

Selling the original o to be 30(°], P to be 45(°], and AR
1o be 0.01[°], UPFF is demonstrated by the computer simula-
tions. Simulated objects are a hemisphere, a semi-paraboloid
and a semi-cllipsoid. Figure 4 shows input images of these
objects. The simulated results are shown in Figure 5.1--5.3. In
each figure, the ncedle map (a) shows the true orientation of
the curved surface, and the map (b) shows the reconstructed
orientation. The order of the difference between the estimated
o and the original o was about 2.37 x 107,

From the reason that there are many surface clements
commonly illuminated by three slighlly varied directions in
UPFF, there is an advantage that the number of the recon-
structed surface elements by UPFF is more than that by Pho-
tometric Stereo.

5. CONCLUSION

A new photometric method named UPFF is proposed
and discussed in this paper. The method adopts the principle
of the monocular vision and the parallel light beam illumina-
tion,

Conditions used in this paper are that the object is with
the perfectly diffused surface and that input image densitics
are the ideal analog quantities,

Under these conditions, an algorithm is developed 10
determine the surface orientation of the curved object includ-
ing the case that the zenith angle of the illuminating direction
is unknown. In comparison with PFF, UPFF can utilize more
simple mechanism that illuminating direction is varied only in
the azimuth direction.

It should be noted that this paper describes the theoreti-
cal aspect of UPFF and does not cover the practical applica-
tions. Those practical problem should be studied by the
development on the hardware of the image processing unit.
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Figure 4 Input Images of Curved Objects
(A: Hemisphere B: Semi-paraboloid C: Semi-ellipsoid)

(a) Needle Map by True (p, )

(a) Needle Map by True (p, )

(a) Needle Map by True (p, q)

(b) Needle Map by Estimated (p, ¢)
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Figure 5-1 Reconstructed Shape of Curved Object
{Object: Hemisphere Lighting: a=30° f=45° AB=0.01°)

(b) Needle Map by Estimated (p. q)

Figl:ll‘t' 5-2 Reconstructed Shape of Curved Object
(Object: Semi-paraboloid  Lighting: o=30° B=45° AB=0.01°)

(b) Needle Map by Estimated (p, q)

Figure 5-3 Reconstructed Shape of Curved Object
(Object: Semi-ellipsoid Lighting: a=30° =45° AB=0.01°)





