
IAPR Workshop On CV -Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

USE O F A PYRAMID PROCESSOR
IN INTERMEDIATE-LEVEL VISION'

Steven L. Tanimoto
Department of Computer Science

University of Washington

Seattle, Washington 98195
U. S. A.

ABSTRACT

Whereas low-level vision consists of filtering and other image-
to-image operations, and high-level vision involves matching and
inference of symbolic, relational structures such as graphs and
frames, the problem area known as "intermediatelevel vision"
requires the extraction of features and symbols from a t w e
dimensional array of pixels. Conventional serial architectures
do not have enough parallelism to handle low- and intermediate-
level tasks very rapidly; at the same time, standard mesh ar-
chitectures do well with low-level operations but are inefficient
for intermediate and high-level problems. A pyramidal architec-
ture, consisting of a hierarchy of meshes, can be more effective
at intermediatelevel problems than these architectures. Two
powerful algorithm design methodologies are explored: bottom-
up (reduction) methods, and top-down (refinement) methods.
Feature extraction and feature selection are complementary a p
proaches to intermediatelevel vision and they are easily imple
mented with these methodologies. This is illustrated with a hi-
erarchical Hough transformation and top-down feature-point lo-
calization. The programming of pyramid machines poses an in-
teresting challenge; a pyramid-oriented iconic dataflow language,
promises to make certain algorithms easy to express.

INTRODUCTION

Architectures for computer vision have generally addressed
the need to process pixels using operations such as convolutions,
median filtering, and contrast enhancement. To a lesser extent
special hardware has been developed for feature extraction; spe-
cial boards for connected components analysis and computing
statistics such as averages and areas of regions have been devel-
oped. What has been missing are architectures that support the
efficient parallel computation of wide varieties of image descrip
tions and features.

Intermediate-level vision can be described as those image
computations which transform a two-dimensional image (in the
form of an array of pixels) into one or more symbolic descriptors
(which may be scalar features or more complicated relational
structures). Intermediate-level computations can be contrasted
with low-level computations, which input images and produce
images (not symbols), and with high-level vision computations
which begin with symbolic descriptions of images and manipu-
late them to resolve ambiguities or to infer specific things about
the images.

Mesh-style parallel computers [Preston and Duff 19841 such as
the CLIP4, MPP, GAPP, and the Connection Machine (ignoring
for the moment its hypercube routing subsystem) can perform
low-level operations efficiently because they can use one process-
ing element per pixel, and the neighborhood data can be gath-
ered very efficiently over the interconnections of the grid. These

systems are less effective a t intermediate-level operations, since
the mesh does not provide the efficient global interconnections
needed to rapidly compute overall statistics of an image.

Parallel processors suitable for handling symbolic computa-
tions are multiprocessors that follow the MIMD discipline rather
than the SIMD one. These systems are effective a t handling com-
putation with coarsegrained parallelism; the tight communica-
tion required for neighborhood-oriented image processing would
be inefficient on an MIMD system.

One suggestion for intermediate-level vision is to build a hy-
brid architecture that includes both a mesh SIMD processor for
the pixel pushing and an MIMD multiprwessor for the symbolic
computations. Then the problem is building an appropriate in-
terface that allows the iconic-to-symbolic computations to run
without a bottleneck (see [Tanimoto 19861).

An alternative is to enhance the mesh architecture with a hi-
erarchy of smaller meshes, resulting in a pyramid of processing
elements. The hierarchical structure can permit global statistics
to be computed much more efficiently than on a straight mesh.
The pyramid of processing elements, or pyramid machine, can
then handle both low-level and intermediate-level vision compu-
tations.

In this paper, the question which is addressed is, "how can
a pyramid machine be used effectively for intermediate-level vi-
sion?"

PYRAMID MACHINE STRUCTURE

Pyramid machines can be defined in terms of topological
structures called "hierarchical domains." A hierarchical domain
is a structured discrete space made up of cells. We define a pyra-
midal cell to be a triple (k, i , j) where k is a level index, and
0 5 k < L, and L is a constant which is one less than the num-
ber of levels in the hierarchical domain. The cell indices obey
the limits: 0 _< i 5 2', and 0 5 j 5 2'.

We call the set of all pyramidal cells for a given value of
L the hierarchical domain of order L. We call the subset of a
hierarchical domain having first coordinate k the k-th level of the
hierarchical domain. The zeroth level is called the apez or "toot,"
and the L-th level is called the base or "finest level." Figure 1
shows the hierarchical domain of order three. The topology of a
hierarchical domain is expressed in terms of two kinds of relations
on pyramid cells: lateral and hierarchical. Let us first consider
the hierarchical relations. A pyramidal cell C' = (k ' , i l , j') is a
child of pyramidal cell C = (k , i , j) if k' = k + 1, either i' = 2i
or i f = 2i + 1 , and either j' = 2 j or j' = 2 j + 1 . In that case, we
also say that C is the parent of C ' .

The lateral relations include neighborings in the eight com-
pass directions, as well as the general relation which is the union
of the individual directional relations. In general, if k' = k, and
li - i'l 5 1, and l j - j'l 5 1, then C' is in the lateral neighbor-
hood of C. If this is the case and C # C' then we say C' is a
lateral neighbor of C . More specifically, if k' = k , and i' = i , and
j' = j - 1, then C' is a south neighbor of C . The other seven

'Research supported in part under NSF Grant IRI-8605889

and Industrial Applications OCT.12-14. 1988, Tokyo lAPR Workshop on CV - Spedal Hahare

Figure 1: The hierarchical domain of order three.

compass-point relations are defined in similar fashion.
The entire neighborhood of a cell can now be defined. For a

given pyramidal cell C, the lateral neighbors of C, the children
of C, and the parent of C are all pymmidal neighbors of C . The
pyramidal neighborhood of C is defined to contain only C and
all the pyramidal neighbors of C. Except for pyramidal cells
touching the borders of the hierarchical domain, a pyramidal
neighborhood contains 14 pyramidal cells.

To define a pyramid machine of order L, one starts with the
hierarchical domain of order L. For each cell of H, a processing
element is provided. Secondly, a commmunication channel is es-
tablished between each processing element and that for each of
its neighboring cells (in general 13). The processing elements are
centrally controlled by a control unit which consists of a Von-
Neumann style serial computer with special extra instructions
which control the operations of the pyramidal array of proceas-
ing elements. Each processing element has its own loeal memory
and it addresses it according to the global memory address broad-
cast by the controller. Some pyramid machines may permit this
address to be modified locally, such as by adding the contents of
a local index register. Each processing element has the capability
to perform both logical and arithmetic operations.

Several prototypes of pyramid machines either have been con-
structed or are under construction. One system, developed at the
University of Washington, employs a custom VLSI chip which
implements sixteen processing elements per chip [Tanimoto et a1
19871, and it is describe in more detail below. Another pyramid
has been constructed from chips left over from construction of
the MPP [Schaefer 19851. The PAPIA pyramid machine is under
development in Italy [Cantoni et a1 19851.

In the University of Washington system, each processing el-
ement can, in one instruction, compare a pattern of bits (given
as part of the instruction) with the contents of the neighborhood
around it. It then resets its state according to whether there
was a match or no match [Tanimoto 19841. This pyramid ma-
chine implements the full lCcell neighborhood whereas the other
systems implement only a 10-cell neighborhood (diagonal lateral
neighbors are not implemented).

THE UNIVERSITY O F WASHINGTON
PYRAMID PROCESSOR HCLM-1

A modest prototype machine using custom VLSI chips has
been constructed and used for simple image processing. This sys-
tem usea nMOS technology with 16 processing elements per chip.
The current implementation incorporates 341 active processing
elements in a pyramid of base 16 x 16. We refer to this system
here as the HCLM-1 (Hierarchical Cellular Logic Machine version
1). The control unit is a simple sequencer that supports condi-
tional branching. The prototype can be and has been hoated by
an IBM PC/AT system and by an Atari personal computer, in-
terfaced through a parallel printer port. An assembler language

and a graphics monitor program support program development in
this hardware environment. Additional algorithm development
support is provided by a pyramid simulation facility in ZetaLisp
on a Symbolics 3600 with color display. Additional details on the
HCL-1 prototype may be found in [Tanimoto et a1 19871.

Currently work is proceeding on a new chip and prototype
that will achieve higher circuit densities.

TAXONOMY O F
INTERMEDIATE-LEVEL OPERATIONS

In order to better understand the realm of operations that
may be considered as intermediate-level vision ones, let us con-
sider possible ways to classify the operations.

One taxonomic scheme is to consider an operation as a func-
tion and examine its domain and its range. Usually, the domain
of an intermediate-level vision operation is assumed to be two-
dimensional image arrays. That leaves only the range of the
operator as a basis for classification. The range should not be
the same as the domain, for then the operation would be syntac-
tically indistinguishable from a low-level (iconic) operation. The
range is typically one of the following:

1. the real numbers; thus the output is a scalar, as might
represent the area of the black regions of the image.

2. a list of vectors. The problem of recovering vectors from an
image is the inverse of plotting vectors into a raster array
which is common in graphics.

3. a relational structure; segmentation algorithms in the lit-
erature often produce a network whose nodes represent re-
gions in the image.

Another classification scheme is based on the roles that the
operations play in the larger process of vision. While an o p
erator that selects a threshold for the image produces a scalar
that is much like the area computed by another operator (math-
ematically they are both real numbers), these values play very
different roles in the vision process are are semantic all:^ distinct.
Then an operator which produces a set of threshold values would
be classified with the operator which produces a single thresh-
old, even though a set is syntactically different from a single
element. This scheme can, however, classify operators together
in the same class even though the processing implied by the op-
erators can be very different (e.g., segmentation by thresholding

followed by connected components labelling is done very differ-
ently from segmentation by split-and-merge region formation).

A third classification scheme is in terms of the computational
complexity of the best known algorithm for the operator. This
is particularly nice from an algorithm-design perspective, since
it tends to group operators in such a way that algorithmic gen-
eralizations can easily be perceived.

Related to this scheme is a fourth classification method which
is according to algorithmic strategy. We can classify an operator
according to the most natural algorithmic strategy for it, on the
architecture of interest. This is the classification used in orga-
nizing the remainder of this paper.

BOTTOM-UP METHODOLOGY

An obvious example of a bottom-up feature-extraction
method is the computation of the average brightness of an image
by having each processing element compute the average of the
brightnesses of its four children. A related method begins with a
thresholded edge image and counts the number of edge pixel8 by
having each P E sum the numbers from its children; the overall
sum can be used as a measure of the perimeter of an object in
the image, provided there is only one object in the image, and
provided that the edges are of proper quality.

A more interesting example of the bottom-up approach to
intermediate-level vision is the extraction of line descriptors in a
"pyramidal Hough transform" [Ku 19861, [Tanimoto 19881. Let
us now describe this algorithm.

IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

Input : A gray-scale image of dimensions 2L x zL. It is assumed
that this image has been moved into the base of the pyra-
midal array before step 1 (below) begins.

Output : A list of (0, p) pairs describing the m most prominent
lines in the image.

S t e p 1. At level L apply a directional edge operator a t each cell
of the image, obtaining a descriptor (@,a) , where 0 is the
angular orirntation of the edge and a is a measure of the
contrast across the edge.

S t e p 2. Using the coordinates (i, j) of each base-level pyramidal
cell, convert the (0, a) pair for each cell to a set containing a
triple K(L,+,y) = ((8 , p, a)}. Here p is the distance from the
origin of the coordinate system to the line passing through
(i, j) making an angle 0 with the horizontal.

S t e p 3. For k - L - 1 down to 0 do
For all cells (k, i, j) at level k do

Ii(k,i,,) + TopClusters(lil, I(", Ii"', IC"").

Here I{' is I{(k+~,zi,~,)~ I<" is I<(k+1,2i,2~+1)~ I{"' is I<(k+1,2i+l,zj)>
and Ii"" is IC(k+L,2i+l,Z,+l).

The function of Topclusters takes each of the four sets of
clusters from the children and merges them intoa single set; clus-
ters that are within a short distance of one another are merged
and their weights combined, and then the m winning clusters
are retained and the others deleted. Topclusters uses a distance
measure on parameter-space points:

where we and w, are weights to balance the contributions from
each dimension of the parameter space.

The pyramidal Hough transform was implemented and tested
[Ku 19861 on a Symbolics 3600 (with simulation software)
The algorithm runs efficiently because it requires only a single
bottom-up wave of activity through the pyramid. The amount of
computation required a t each level is O (r n (l ~ ~ m) ~) time steps,
which is the number of operations required to sort m items with
a non-branching program.

For another example of a bottom-up line-clustering method,
see [Hartley and Rosenfeld 19851.

TOP-DOWN METHODOLOGY

Provided a hierarchical representation of the image has been
established (e.g., by averaging each cell's children to establish a
value for the cell), various operations can proceed in a topdown
manner through the pyramid. By performing an evaluation and
a confinement of attention a t each level in turn, the precision of
the desired solution can be gradually improved. This general al-
gorithm paradigm, termed "assessment and focus," is the subject
of a recent Ph.D. dissertation [Blanford 19881.

As an example of a top-down operator for intermediate-level
vision, we take the problem of finding the brightest point within
the brightest zone of an image. If images were perfect digitiza-
tions of scenes, we might accept the ~ i x e l of maximum value in
the image as representing the brightest point in the scene. How-
ever, because of sensor noise, the maximal pixel is not likely to
be the one desired. A pixel which is locally maximal within a set
of hierarchically-related contexts can be efficiently found by the
following procedure.

Beginning with a pyramid data structure built by having each
cell average the values of its children, a top-down search is per-
formed. The search begins by marking the apex. Then a loop
is begun: in each iteration the four children of the marked node
compare their values and the mark is passed to the child with the
maximal value. (The marked parent becomes unmarked.) The
loop proceeds until a base-level cell becomes marked. The coor-
dinates of this base-level cell may then be output as the solution.

Actually the most time-consuming part of the loop can be
taken out of the loop and performed in parallel before the loop

begins: for every cell in the hierarchical domain, the four children
can compare their values and set a bit a t the child with the
highest one. Then in the loop it is only necessary to pass the
mark to the child having the bit set. More interesting kinds
of points can be found in an image by building the pyramid in
ways other than straight averaging. Combinations of averaging
and maximizing are particularly useful [Blanford and Tanimoto
19881.

While this simple search technique is indeed very simple, it
is powerful because of the speed with which it can be computed
and because it can be applied to a wide variety of images. It
can be used as a component of more complex algorithms such
as those for segmentation; region-based segmentation algorithms
sometimes require the judicious selection of seed pixels before
they become useful.

Another top-down algorithm is an interesting one for the gen-
eralized Hough transformation [Dyer 19871.

PROGRAMMING CONSIDERATIONS

While programming computers is challenging under ordinary
circumstances, programming parallel machines can be particu-

larly difficult because of the added complications of managing
processor workload balance, interprocessor communication, and
synchronization.

Image processing is very amenable to parallel processing.
While massive amounts of pixel processing may be going on, it
can all be expressed concisely using symbolic representations of
whole images or pyramids.

Good software tools are important for programming parallel
vision machines such as a pyramid machine. In addition to the
essential language tools (assemblers, operating systems), special
image-algorithm visualization tools are appropriate. For exam-
ple, a spreadsheet-style interface for pyramidal algorithms has
been explored [Blanford and Tanimoto 19861. An image-flow lan-
guage incorporating pyramids has been proposed for describing
smart-sensor processing. This language employs pyramid-shaped
icons along with other icons and symbols [Burt 19881. We are
currently exploring the possibility of using an iconic pyramid lan-
guage for intermediate-level vision algorithm development. The
elementary objects for this language are integer pyramids and
functions of integer pyramids. A related language for images is
HI-VISUAL [Hirakawa et al 1987)

Ultimately it may be possible to have a kind of automatic
programming for these vision machines. Through algorithm gen-
erators, automatic parameter tuning, and good libraries of rou-
tines, efficient new algorithms for applications of machine vision
could be produced with little human pain.

It should be noted that many studies by many researchers
have been made on pyramid algorithms. It is beyond the scope
here to survey them. One compendium of the earlier studies is
[Tanimoto and Klinger 19801, and a slightly later collection is
[Rosenfeld 19841.

REFERENCES

1. Blanford, R. P. 1988. Assessment and Focus: An Approach
to Parallel Computer Vision. Ph.D. dissertation, Dept. of
Computer Science, University of Washington, Seattle WA.

2. Blanford, R. P , and Tanimoto, S. L. 1986. The Pyramid-
Calc system for research in pyramid machine algorithms.
Proceedings of the 1986 IEEE Computer Society Workshop
on Vi8ual Languages, Dallas, TX, June 25-27, 1986. pp138-
142.

3. Blanford, R. P. and Tanimoto, S. L. 1988. Bright-spot
detection in pyramids. Computer Viston, Graphics and
Image Processing, Vol. 43, pp.133-149.

4. Burt, P. J . 1988. Algorithms and architectures for smart
sensing. Proceedings of the DARPA Image Understanding
Workshop, April, pp.139-153.

lAPR Workshop On CV - Speaal Hardvare and lndusbial Applications OCT.12-14. 1988, Tokyo

5. Cantoni, V., Ferretti, M., Levialdi, S., and Maloberti, F.
1985. A pyramid project using integrated technology. In
[Levialdi 19851, pp.121-132.

6. Duff, M. J . B. 1986. Intermediate-Level Computer Vision.
London: Academic Press.

7. Dyer, C. R. 1987. Multiscale image understanding. In [Uhr
19871, pp171-213.

8. Hartley, R., and Rosenfeld, A. 1985. Hierarchical line link-
ing for corner detection. In [Levialdi 19851, pp.lO1-119.

9. Hirakawa, M., Iwata, S., Yoshimoto, I., Tanaka, M., and
Ichikawa, T. 1987. HI-VISUAL iconic programming. Pro-
ceedings of %he 1987 Workshop on Visual Languages, spon-
sored by Linkoping University and the University of Pitts-
burgh, held in Linkoping, Sweden, Aug. 19-21, 1987,
pp305-314.

10. Ku, K. L. 1987. Algorithms and Architectures for the
Hough Transform. Ph.D. dissertation, Department of Elec-
trical Engineering, University of Washington, Seattle, WA.

11. Levialdi, S. (ed). 1985. Parallel Integrated Technology for
Image Processing, London: Academic Press.

12. Preston, K., Jr., and Duff, M. J. B. 1984. Modem Cellular
Automata: Theory and Applications. New York: Plenum
Press.

13. Rosenfeld, A. (ed.) 1984. Multinsolution Image Processing
and Analysis. New York: Springer-Verlag.

14. Schaefer, D. H., Wilcox, G. C., Harris, V. J . 1985. A pyra-
mid of MPP processing elements - experiences and plans.
Proc. 18th Annual Hawaii International Conference on
System Sciences, Vol. 1, pp.178-184.

15. Tanimoto, S. L. 1984. A hierarchical cellular logic for pyra-
mid computers. Journal of Parallel and Distributed Com-
puting, Vol. 1, No. 2, pp.105-132.

16. Tanimoto, S. L. 1986. Architectural issues for intermediate-
level vision. In [Duff 19861, pp3-17.

17. Tanimoto, S. L. 1988. From pixels to predicates in pyramid
machines. Proceedings of the COST Workshop, From the
Pizels to the Featuns, held at Bonas, Gers, France, August
22-27.

18. Tanimoto, S. L., and Klinger, A. (eds.) 1980. Structured
Computer Vision: Machine Perception Through Hierarchi-
cal Computation Structures. New York: Academic Press.

19. Tanimoto, S. L., Ligocki, T. J. , and Ling, R. 1987. A
prototype pyramid machine for hierarchical cellular logic.
In [Uhr 19871, pp.43-83.

20. Uhr, L. (ed). 1987. Parallel Computer Vision. Orlando,
FL: Academic Press.

