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ABSTRACT 

Whereas low-level vision consists of filtering and other image- 
to-image operations, and high-level vision involves matching and 
inference of symbolic, relational structures such as graphs and 
frames, the problem area known as "intermediatelevel vision" 
requires the extraction of features and symbols from a t w e  
dimensional array of pixels. Conventional serial architectures 
do not have enough parallelism to  handle low- and intermediate- 
level tasks very rapidly; at  the same time, standard mesh ar- 
chitectures do well with low-level operations but are inefficient 
for intermediate and high-level problems. A pyramidal architec- 
ture, consisting of a hierarchy of meshes, can be more effective 
at  intermediatelevel problems than these architectures. Two 
powerful algorithm design methodologies are explored: bottom- 
up (reduction) methods, and top-down (refinement) methods. 
Feature extraction and feature selection are complementary a p  
proaches to intermediatelevel vision and they are easily imple 
mented with these methodologies. This is illustrated with a hi- 
erarchical Hough transformation and top-down feature-point lo- 
calization. The programming of pyramid machines poses an in- 
teresting challenge; a pyramid-oriented iconic dataflow language, 
promises to  make certain algorithms easy to express. 

INTRODUCTION 

Architectures for computer vision have generally addressed 
the need to process pixels using operations such as convolutions, 
median filtering, and contrast enhancement. To a lesser extent 
special hardware has been developed for feature extraction; spe- 
cial boards for connected components analysis and computing 
statistics such as averages and areas of regions have been devel- 
oped. What has been missing are architectures that support the 
efficient parallel computation of wide varieties of image descrip 
tions and features. 

Intermediate-level vision can be described as those image 
computations which transform a two-dimensional image (in the 
form of an array of pixels) into one or more symbolic descriptors 
(which may be scalar features or more complicated relational 
structures). Intermediate-level computations can be contrasted 
with low-level computations, which input images and produce 
images (not symbols), and with high-level vision computations 
which begin with symbolic descriptions of images and manipu- 
late them to resolve ambiguities or to infer specific things about 
the images. 

Mesh-style parallel computers [Preston and Duff 19841 such as 
the CLIP4, MPP, GAPP, and the Connection Machine (ignoring 
for the moment its hypercube routing subsystem) can perform 
low-level operations efficiently because they can use one process- 
ing element per pixel, and the neighborhood data can be gath- 
ered very efficiently over the interconnections of the grid. These 

systems are less effective a t  intermediate-level operations, since 
the mesh does not provide the efficient global interconnections 
needed to rapidly compute overall statistics of an image. 

Parallel processors suitable for handling symbolic computa- 
tions are multiprocessors that follow the MIMD discipline rather 
than the SIMD one. These systems are effective a t  handling com- 
putation with coarsegrained parallelism; the tight communica- 
tion required for neighborhood-oriented image processing would 
be inefficient on an MIMD system. 

One suggestion for intermediate-level vision is to build a hy- 
brid architecture that includes both a mesh SIMD processor for 
the pixel pushing and an MIMD multiprwessor for the symbolic 
computations. Then the problem is building an appropriate in- 
terface that allows the iconic-to-symbolic computations to run 
without a bottleneck (see [Tanimoto 19861). 

An alternative is to enhance the mesh architecture with a hi- 
erarchy of smaller meshes, resulting in a pyramid of processing 
elements. The hierarchical structure can permit global statistics 
to be computed much more efficiently than on a straight mesh. 
The pyramid of processing elements, or pyramid machine, can 
then handle both low-level and intermediate-level vision compu- 
tations. 

In this paper, the question which is addressed is, "how can 
a pyramid machine be used effectively for intermediate-level vi- 
sion?" 

PYRAMID MACHINE STRUCTURE 

Pyramid machines can be defined in terms of topological 
structures called "hierarchical domains." A hierarchical domain 
is a structured discrete space made up of cells. We define a pyra- 
midal cell to be a triple (k, i ,  j )  where k is a level index, and 
0 5 k  < L, and L is a constant which is one less than the num- 
ber of levels in the hierarchical domain. The cell indices obey 
the limits: 0 _< i  5 2', and 0 5 j 5 2'. 

We call the set of all pyramidal cells for a given value of 
L the hierarchical domain of order L. We call the subset of a 
hierarchical domain having first coordinate k  the k-th level of the 
hierarchical domain. The zeroth level is called the apez or "toot," 
and the L-th level is called the base or "finest level." Figure 1 
shows the hierarchical domain of order three. The topology of a 
hierarchical domain is expressed in terms of two kinds of relations 
on pyramid cells: lateral and hierarchical. Let us first consider 
the hierarchical relations. A pyramidal cell C' = ( k ' , i l ,  j') is a 
child of pyramidal cell C  = ( k ,  i ,  j )  if k' = k + 1, either i' = 2i  
or i f  = 2i + 1 ,  and either j' = 2 j  or j' = 2 j  + 1 .  In that case, we 
also say that C  is the parent of C ' .  

The lateral relations include neighborings in the eight com- 
pass directions, as well as the general relation which is the union 
of the individual directional relations. In general, if k' = k, and 
li - i'l 5 1, and l j  - j'l 5 1, then C' is in the lateral neighbor- 
hood of C.  If this is the case and C  # C' then we say C' is a 
lateral neighbor of C .  More specifically, if k' = k ,  and i' = i ,  and 
j' = j - 1, then C' is a south neighbor of C .  The other seven 
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Figure 1: The hierarchical domain of order three. 

compass-point relations are defined in similar fashion. 
The entire neighborhood of a cell can now be defined. For a 

given pyramidal cell C, the lateral neighbors of C, the children 
of C, and the parent of C are all pymmidal neighbors of C .  The 
pyramidal neighborhood of C is defined to contain only C and 
all the pyramidal neighbors of C. Except for pyramidal cells 
touching the borders of the hierarchical domain, a pyramidal 
neighborhood contains 14 pyramidal cells. 

To define a pyramid machine of order L, one starts with the 
hierarchical domain of order L. For each cell of H, a processing 
element is provided. Secondly, a commmunication channel is es- 
tablished between each processing element and that for each of 
its neighboring cells (in general 13). The processing elements are 
centrally controlled by a control unit which consists of a Von- 
Neumann style serial computer with special extra instructions 
which control the operations of the pyramidal array of proceas- 
ing elements. Each processing element has its own loeal memory 
and it addresses it according to  the global memory address broad- 
cast by the controller. Some pyramid machines may permit this 
address to be modified locally, such as by adding the contents of 
a local index register. Each processing element has the capability 
to perform both logical and arithmetic operations. 

Several prototypes of pyramid machines either have been con- 
structed or are under construction. One system, developed at  the 
University of Washington, employs a custom VLSI chip which 
implements sixteen processing elements per chip [Tanimoto et a1 
19871, and it is describe in more detail below. Another pyramid 
has been constructed from chips left over from construction of 
the MPP [Schaefer 19851. The PAPIA pyramid machine is under 
development in Italy [Cantoni et a1 19851. 

In the University of Washington system, each processing el- 
ement can, in one instruction, compare a pattern of bits (given 
as part of the instruction) with the contents of the neighborhood 
around it. It then resets its state according to whether there 
was a match or no match [Tanimoto 19841. This pyramid ma- 
chine implements the full lCcell neighborhood whereas the other 
systems implement only a 10-cell neighborhood (diagonal lateral 
neighbors are not implemented). 

THE UNIVERSITY O F  WASHINGTON 
PYRAMID PROCESSOR HCLM-1 

A modest prototype machine using custom VLSI chips has 
been constructed and used for simple image processing. This sys- 
tem usea nMOS technology with 16 processing elements per chip. 
The current implementation incorporates 341 active processing 
elements in a pyramid of base 16 x 16. We refer to this system 
here as the HCLM-1 (Hierarchical Cellular Logic Machine version 
1). The control unit is a simple sequencer that supports condi- 
tional branching. The prototype can be and has been hoated by 
an IBM PC/AT system and by an Atari personal computer, in- 
terfaced through a parallel printer port. An assembler language 

and a graphics monitor program support program development in 
this hardware environment. Additional algorithm development 
support is provided by a pyramid simulation facility in ZetaLisp 
on a Symbolics 3600 with color display. Additional details on the 
HCL-1 prototype may be found in [Tanimoto et a1 19871. 

Currently work is proceeding on a new chip and prototype 
that will achieve higher circuit densities. 

TAXONOMY O F  
INTERMEDIATE-LEVEL OPERATIONS 

In order to better understand the realm of operations that 
may be considered as intermediate-level vision ones, let us con- 
sider possible ways to classify the operations. 

One taxonomic scheme is to consider an operation as a func- 
tion and examine its domain and its range. Usually, the domain 
of an intermediate-level vision operation is assumed to be two- 
dimensional image arrays. That leaves only the range of the 
operator as a basis for classification. The range should not be 
the same as the domain, for then the operation would be syntac- 
tically indistinguishable from a low-level (iconic) operation. The 
range is typically one of the following: 

1. the real numbers; thus the output is a scalar, as might 
represent the area of the black regions of the image. 

2. a list of vectors. The problem of recovering vectors from an 
image is the inverse of plotting vectors into a raster array 
which is common in graphics. 

3. a relational structure; segmentation algorithms in the lit- 
erature often produce a network whose nodes represent re- 
gions in the image. 

Another classification scheme is based on the roles that the 
operations play in the larger process of vision. While an o p  
erator that selects a threshold for the image produces a scalar 
that is much like the area computed by another operator (math- 
ematically they are both real numbers), these values play very 
different roles in the vision process are are semantic all:^ distinct. 
Then an operator which produces a set of threshold values would 
be classified with the operator which produces a single thresh- 
old, even though a set is syntactically different from a single 
element. This scheme can, however, classify operators together 
in the same class even though the processing implied by the op- 
erators can be very different (e.g., segmentation by thresholding 

followed by connected components labelling is done very differ- 
ently from segmentation by split-and-merge region formation). 

A third classification scheme is in terms of the computational 
complexity of the best known algorithm for the operator. This 
is particularly nice from an algorithm-design perspective, since 
it tends to group operators in such a way that algorithmic gen- 
eralizations can easily be perceived. 

Related to this scheme is a fourth classification method which 
is according to algorithmic strategy. We can classify an operator 
according to the most natural algorithmic strategy for it, on the 
architecture of interest. This is the classification used in orga- 
nizing the remainder of this paper. 

BOTTOM-UP METHODOLOGY 

An obvious example of a bottom-up feature-extraction 
method is the computation of the average brightness of an image 
by having each processing element compute the average of the 
brightnesses of its four children. A related method begins with a 
thresholded edge image and counts the number of edge pixel8 by 
having each P E  sum the numbers from its children; the overall 
sum can be used as a measure of the perimeter of an object in 
the image, provided there is only one object in the image, and 
provided that the edges are of proper quality. 

A more interesting example of the bottom-up approach to 
intermediate-level vision is the extraction of line descriptors in a 
"pyramidal Hough transform" [Ku 19861, [Tanimoto 19881. Let 
us now describe this algorithm. 
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Input :  A gray-scale image of dimensions 2L x zL. It is assumed 
that this image has been moved into the base of the pyra- 
midal array before step 1 (below) begins. 

Output :  A list of (0, p) pairs describing the m most prominent 
lines in the image. 

S t e p  1. At level L apply a directional edge operator a t  each cell 
of the image, obtaining a descriptor (@,a) ,  where 0 is the 
angular orirntation of the edge and a is a measure of the 
contrast across the edge. 

S t e p  2. Using the coordinates (i,  j) of each base-level pyramidal 
cell, convert the (0, a )  pair for each cell to a set containing a 
triple K(L,+,y) = ( (8 ,  p, a)}. Here p is the distance from the 
origin of the coordinate system to the line passing through 
(i, j )  making an angle 0 with the horizontal. 

S t e p  3. For k - L - 1 down to 0 do 
For all cells (k, i,  j )  at  level k do 

Ii(k,i,,) + TopClusters(lil, I(", Ii"', IC""). 

Here I{' is I{(k+~,zi,~,)~ I<" is I<(k+1,2i,2~+1)~ I{"' is I<(k+1,2i+l,zj)> 
and Ii"" is IC(k+L,2i+l,Z,+l). 

The function of Topclusters takes each of the four sets of 
clusters from the children and merges them intoa single set; clus- 
ters that are within a short distance of one another are merged 
and their weights combined, and then the m winning clusters 
are retained and the others deleted. Topclusters uses a distance 
measure on parameter-space points: 

where we and w, are weights to balance the contributions from 
each dimension of the parameter space. 

The pyramidal Hough transform was implemented and tested 
[Ku 19861 on a Symbolics 3600 (with simulation software) 
The algorithm runs efficiently because it requires only a single 
bottom-up wave of activity through the pyramid. The amount of 
computation required a t  each level is O ( r n ( l ~ ~ m ) ~ )  time steps, 
which is the number of operations required to sort m items with 
a non-branching program. 

For another example of a bottom-up line-clustering method, 
see [Hartley and Rosenfeld 19851. 

TOP-DOWN METHODOLOGY 

Provided a hierarchical representation of the image has been 
established (e.g., by averaging each cell's children to establish a 
value for the cell), various operations can proceed in a topdown 
manner through the pyramid. By performing an evaluation and 
a confinement of attention a t  each level in turn, the precision of 
the desired solution can be gradually improved. This general al- 
gorithm paradigm, termed "assessment and focus," is the subject 
of a recent Ph.D. dissertation [Blanford 19881. 

As an example of a top-down operator for intermediate-level 
vision, we take the problem of finding the brightest point within 
the brightest zone of an image. If images were perfect digitiza- 
tions of scenes, we might accept the ~ i x e l  of maximum value in 
the image as representing the brightest point in the scene. How- 
ever, because of sensor noise, the maximal pixel is not likely to 
be the one desired. A pixel which is locally maximal within a set 
of hierarchically-related contexts can be efficiently found by the 
following procedure. 

Beginning with a pyramid data structure built by having each 
cell average the values of its children, a top-down search is per- 
formed. The search begins by marking the apex. Then a loop 
is begun: in each iteration the four children of the marked node 
compare their values and the mark is passed to the child with the 
maximal value. (The marked parent becomes unmarked.) The 
loop proceeds until a base-level cell becomes marked. The coor- 
dinates of this base-level cell may then be output as the solution. 

Actually the most time-consuming part of the loop can be 
taken out of the loop and performed in parallel before the loop 

begins: for every cell in the hierarchical domain, the four children 
can compare their values and set a bit a t  the child with the 
highest one. Then in the loop it is only necessary to pass the 
mark to the child having the bit set. More interesting kinds 
of points can be found in an image by building the pyramid in 
ways other than straight averaging. Combinations of averaging 
and maximizing are particularly useful [Blanford and Tanimoto 
19881. 

While this simple search technique is indeed very simple, it 
is powerful because of the speed with which it can be computed 
and because it can be applied to a wide variety of images. It 
can be used as a component of more complex algorithms such 
as those for segmentation; region-based segmentation algorithms 
sometimes require the judicious selection of seed pixels before 
they become useful. 

Another top-down algorithm is an interesting one for the gen- 
eralized Hough transformation [Dyer 19871. 

PROGRAMMING CONSIDERATIONS 

While programming computers is challenging under ordinary 
circumstances, programming parallel machines can be particu- 

larly difficult because of the added complications of managing 
processor workload balance, interprocessor communication, and 
synchronization. 

Image processing is very amenable to parallel processing. 
While massive amounts of pixel processing may be going on, it 
can all be expressed concisely using symbolic representations of 
whole images or pyramids. 

Good software tools are important for programming parallel 
vision machines such as a pyramid machine. In addition to the 
essential language tools (assemblers, operating systems), special 
image-algorithm visualization tools are appropriate. For exam- 
ple, a spreadsheet-style interface for pyramidal algorithms has 
been explored [Blanford and Tanimoto 19861. An image-flow lan- 
guage incorporating pyramids has been proposed for describing 
smart-sensor processing. This language employs pyramid-shaped 
icons along with other icons and symbols [Burt 19881. We are 
currently exploring the possibility of using an iconic pyramid lan- 
guage for intermediate-level vision algorithm development. The 
elementary objects for this language are integer pyramids and 
functions of integer pyramids. A related language for images is 
HI-VISUAL [Hirakawa et al 1987) 

Ultimately it may be possible to have a kind of automatic 
programming for these vision machines. Through algorithm gen- 
erators, automatic parameter tuning, and good libraries of rou- 
tines, efficient new algorithms for applications of machine vision 
could be produced with little human pain. 

It should be noted that many studies by many researchers 
have been made on pyramid algorithms. It is beyond the scope 
here to survey them. One compendium of the earlier studies is 
[Tanimoto and Klinger 19801, and a slightly later collection is 
[Rosenfeld 19841. 
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