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ABSTRACT 
orientation of line segments located in a search area. The matching 
process is made very fast by avoiding search. There is no attempting 

The use of depth and motion for 3-D scene analysis requires a system 
to exploit suuctural info,,,,ation contained in the image. 

which can accuratelv and reliablv measure image motion. Such - 
measurements may be obtained by tracking the image position and The dynamic and geomevic alvibutes of each token are then 
velocities of edge lines observed in a a closely spaced monocular using each of the corresponding observed The 
sequence of images. The reliability andprecision of such a technique 
is greatly enhanced by maintaining a model of image flow composed 

for both the geometric and dynamic attributes are based on a Kalman 

of the position and velocities of tokens constructed from edge lines. 
filter. At the same time, the flow model is updated by adding or 
deleting tokens. A more complete description of this process is 

In this paper, we present algorithmic aspects of such a system and 
described in [CRO 881. 

show how its complexity can be reduced, for optimizing the hardware 
implentation. ~ e s u l t s  on real data are provided and the hardware 
complexity is evaluated. 

1 : INTRODUCTION. 
Techniques for inferring depth from motion are notoriously sensitive 
to noise in flow measurement due to the fact that most mechanical 
means for disp:aci~~g a camera generate a considc~.able amount of 
vibration. An actively updated "flow model" provides a technique for 
minimizing the degradation due to mechanical noise and occlusion. 
An overview of such a process, that matches tokens and maintains the 
flow model, is represented in Figure 1 : 
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Figure 1 

Newly observed tokens arrive continously from a token extraction 
process and a suitable parametric representation is computed. The 
tokens extracted from each image, referred to as an "observation", are 
matched to a flow model. This flow model is composed of "active" 
tokens which are expressed in an internal representation composed of 
geometric and dynamic attributes. The geometric attributes are the 
same as those of the observation tokens. The dynamics attributes 
include estimates of the speed of the tokens as well as their confidence 
factor. 

The matching process develops a list of observed tokens which 
correspond to each model token. Matching is based on position and 

2 : KALMAN FILTER FOR HARDWARE 
IMPLEMENTATION. 

With regard to the prediction and model updale phase, the requirement 
of fast and simple hardware imposes a need to avoid the matrix 
inversions inherent in the classic Kalman Filter Formulation. It can 
be done if we assume that an observed token can be expressed as a 
vector : 

Tt = (11. 12, 13 .. .tn) 
with parameters ti not corre1ated.Thus. each parameter can be 
processed independandy, and the flow model of a token can be 
expressed as a set of flow models, each one representative of one 
parameter. Then we can save computation time by implementing n 
Kalman filters working in parallel. 

For the same goal we need to reduce the complexity of Kalman filter's 
equations, this will be possible making some assumptions : 

i) We assume that the transition matrix cp i's not time dependant, ie, 
we consider a stationnary model updated at constant time intervals 1. 
If a model token cannot be matched with an image token, we update 
the model using the predicted value. 

ii) We also assume that each parameter t can be expressed as a vector : 
ti = (xi. vi) 

In which xi represents the position and vi the velocity. We don't 
estimate the acceleration and we consider that between time tat which 
the model has been updated and time t+At for which we want to 
predict the position of the token. there is no velocity change. Making 
such an assumption is equivalent to make a model emor which 
commonly leads the Kalman filter to diverge, but it is also well 
known that such a problem can be avoided by increasing the estimated 
state covariance matrix Q L A B ] .  

With these assumptions, the transition matrix can be written : 

Then we can express the Kalman's equations at time t = k as : 
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@cted state vector : 
Xkk-l = Xk-l/k-1 + vk-l/k-1 
vk/k-1 = vk-l/k-1 

predicted state covariance : 
q d k - 1 = 0 . h - l / k - l  . ~ T + Q  

pmhcted measure convariance : 
Um-1  = H . h/k-1 .  HT +R 

Kalman gain : 
Kk=qdk-1.  HT[H,qdkVl  .HT+R]-1 

updated state vector : 
Xm = Xm. 1 + K 1 . [Zk - xk/k-l] 

V W ~ = W - I  +K2.[Zk -xm-11 

updated state covariance : 
q d k = P ~ - l  -Kk . H .  qdk-1 

3 - the tangential distance from the origin of a line segment is often 
unreliable, due to random effects wich break edge lines into smaller 
segments. 
This parameter provides the mid-point position along the carrier line 
with a poor precision. 

4 - The lenght of a line segment is not reliable for the same random 
effects than here above described. This information gives the line 
extend centered on the mid point. 

These considerations suggest the use of parametric representation for a 
line segment composed of the midpoint, the orientation and the 
length. It contains four parameters and is mathematically equivalent 
to a representation in terms of end-points. Furthermore, it allows us 
to group each parameter as an estimated value and a variance. 

The mid-point is normaly expressed in artesian coordinates. However 
the parameter uncertainties perpendicular to the line segment are 
qualitatively different from those along the segment. This suggests a 
transformation of the center point into parameters (c, d) where : 
c is the ~er~endicular distance to the oriaine. and - .  - 

In equations (6) and (7). zk remesents the oosition of the matched d is the displacement along the line equation from the perpendicular 
. .  -- . 

intersect to the mid-point. image token. matching being done on the basis of predicted position 
The (c, d) are equivalent to rotating the segment by - them in accordance with predicted measure covariance. If no matching 
about the origine so that the mid-point lies on the X axis. That is (cf occurs, then Zk takes the value of the predicted position and updated 
Figure 2) : 

state vector will be equal to the predicted state vector. We can notice d = x Cos (theta) + y Sin (theta) 
that equations (3). (4). (5) and (8) are independant from observations, c = -x Sin (theta) + y Cos (theta) 
depending only on subscript k for given Q and R, so that filter's 
parameters defined by these equations can be computed during an 
initialization phase and read in memory during operating phases. 

So, implementing Kalman filter needs only a few arithmetic 
operations : 

* compute predicted position, equation (1) : 1 addition, 
* update model token position and velocity, equations (6), 
(7) : 1 substraction. 2 multiplications, 2 additions. 

Due to the simplicity of these operations, the cost of token tracking 
wiU be dramatically lower than the cost of matching, and major effort 
is to be done to reduce this cost. 

3 : SEARCH AREA AND MATCHING. 
A : PARAMETRIC REPRESENTATION FOR A TOKEN. 
By definition, the Token Tracker aims to track any token one can 
extract from a scene such as comers, junctions, line segments, 
regions. For historical reasons, we have choosen to deal with line 
segments extracted from the scene being analysed. Edges are detected 
by a version of the ca;ny operator designed and programmed by 
Deriche [CAN 86][DER 871. An edge linking step [GIR 861 and a 
polygonal approximation [BER 851 provide the edge segments on 
which the tracking is done. 

A minimal representation for such an edge segment requires 4 
parameters. The classic representation are the cartesian coordinates of 
the two end points. Unfortunately, this representation is inconvenient 
for matching, particulary when matching is based on distance 
normalized by a covariance. 

If we consider the uncertainties in extracting edge lines, we can make 
a number of observations, in particular : 

1 - the perpendicular position of a line segment is reliable. Its 
precision depends of segment extraction process and is usually on the 
order of some pixels. 
2 - the orientation of a line segment has a precision which is 

proportional to the inverse tangent of the ratio of the precision of the 
perpendicular position to the length of the segment (i.e. longer 
segments have a more precise orientation). 
The set of these 2 first parameters defines the "carrier line" of the 
segment with a high accuracy. 

Figure 2 

If these four parameters are sufficient for describing a line segment, 
they have to be completed for the matching process by an euclidan 
distance between mid points of the predicted and the observed token. 
In fact, large uncertainty on d introduce a leverage effect that can lead 
to match 2 segments that are far, in term of euclidean distance, even if 
c, theta, d and L are close (cf Figure 3). 

A simple test rejects for the matching all segments located, in term of 
euclidean distance, far away the predicted ppsition. 

The predicted search area is then determined by a process that tests if 
the difference on attributes (between observed and predicted value) is 
less than 3 standard deviations. These tests are followed by another 
one based on euclidean distance measurement which consists to check 
overlapp between the two segments. It uses explicitely the lenght of a 
segment and avoids some empiric threshold. Then the best match is 
computed between all segments that succed to these 4 tests by using 
a cost function based on a mahanalobis distance. 
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Figure 3 

B : HARDWAREIMPLEMENTATION. 
From a hardware point of vue, kalman filter computations are based 
on the use of n kalman filters working in parallel. Each of them is 
assigned to a parameter of the vector S describing a segment. In a 
same way, all tests necessary for determining if a token is, or not. 
inside the search area are computed in the same time, the cost 
function being evaluated only if all tests succeed. 

In our hardware development, we have been using 5 kalman modules 
assigned to the 5 attributes of the vector S = (c, theta, L, x, y). The 
computation of c, theta, L determines of the search area while x and y 
test the euclidean distance. Such a representation provides several 
advantages: 
- It is less expensive (in term of numbcr of chips and procesing time) 
to evaluate x and y using a kalman filter, rather than computing them 
from c and d. Kalman filter rcquieres only one substraction, 2 
multiplicndons 3r.d 2 addi:io?.s. The computation of x and y (x = d 
Cos theta - c Sin theta & y = d Sin theta + c Cos theta) needs 4 
multiplications, 2 additions and the determination of sinus and 
cosinus for the predicted the observed token. 
- The 5 components of the vector V are available at the same time and 
the parallelism is not affected by some complex computations. 

One can observe that the tangential distance d hasn't been taking into 
account. In fact, this measurement doesn't bring any usefull 
information that should increase the robusmess of the matching when 
the euclidean distance test exists. Its computation can be ignored in 
order to decrease the hardware complexity. 

4 : EXPERIMENTAL ASSESMENT. 
The token wcker above presented has been applied on a robotics 
configuration. In these experiments, a camera is fixed on the robot 
arm and moves around an object located in the workspace of the 
robot.Each token in the flow model is assigned an identification 
number when it is created. This number may be used to identify 
tokens in snapshots of the flow model. 

Figure 4 shows the raw image number 25 and 45 of a sequence in 
which the camera follows a roughly circular preprogrammed trajectory 
around an object (a hexagonal Rubik's puzzle). 
Figure 5 displays a trace of the correspondance between snapshot 
dumps of the model after images (25 and 30). (30 and 35). (35 and 40) 
and (40 and 45). The line segments in each trace show the 
displacement of the midpoint of each token in image coordinates. 

5 : CONCLUSION. 
The token tracker is a simple process which provides an elegant and 
reliable solution to the problem of image flow measurement and 
image comspondance. The resulting flow model is robust; it is able 
to tolerate image disturbance due to noise and photometric effects. 
Token tracking is made possible by maintaining an explicit estimate 
of the precision as spatial and dynamic attributes using a Kalman 
Filter. 
Making some assumptions, computaion of matrix inversions can be 
avoided and Kalman filter can be easily implemented in hardware. A 
suitable representation for tokens allows a simple matching and 
determination of the search area. This token tracker, that is expected 
to deal with 10 images per second, is under hardware dcvelopment. 
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The reliability and robustness of this experimentation is displayed in 
figure 6 which indicates the matching results for this sequence of 
images. For each image, the number of tokens in the flow model as 
well as the number of good and false matches is indicated. This figure 
stresses the fact that the system is capable of coping with occlusions 
and degradations due to noise and robot vibrations. 
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Figure 4 
Raw images 25 and 45 

Figure 5 
Matches between images (25.30). (30.35). (35.40). (40.45) 

Figure 6 
Matching evaluation 

Falses matches 

0 

0 

3 

0 

Nb of matches 

8 4 

8 9 

8 6 

75 

Images 

25 - 30 

30 - 35 

35 - 40 

40 - 45 

Nb of Tokens 

136  

140  

139  

136  


