
IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

A HIGH SPEED RASTER-TO-VECTOR CONVERSION
USING SPECIAL HARDWARE FOR CONTOUR TRACKING

Shigeyoshi Shimotsuji, Akio Okazaki, Osamu Hori and Shou Tsunekawa
Research and Development Center

Toshiba Corporation

1, Komukai Toshiba-cho, Saiwai-ku
Kawasaki 210, Japan

ABSTRACT image memory access, such as an access to a region

This paper describes a high speed raster-to-vector
conversion technique which is applicable to many fields
in drawing processing. The major feature of the
proposed technique is that raster-to-vector
conversion can be realized by one simple raster
scanning process to an input image and by processings
performed only with contour tracking due to the fact
that a significant part of a drawing image is only the
boundary between black and white regions.

In order to speed up raster-to-vector conversion, the
raster scanning process and processings with contour
tracking, which consume much time but are repetitions
of simple processings, have been implemented by a
special hardware.

Reduction of about 90% in raster-to-vector
conversion time is possible by using the accelerator.
The effectiveness and flexibility of the proposed
processings are discussed, showing experimental
results of automatic extraction of polygons which
represent houses from map images.

1. Introduction

Automatic data entry to geographic information
systems and CAD systems using digital image
processing and pattern recognition techniques has
been studied to shorten the initial data input time[1,2,3,
41. Conversion from image data (raster) to graphic
data (vector) is one of the key techniques to
accomplishing the above aim, and it is applicable to
many fields in line-drawing processing, such as data
compaction, line editing, and shape analysis.

This paper first proposes a new raster-to-vector
conversion algorithm based on a repetition of pixel
access along a contour of an object in an image or a
skeleton in the thinned image (Section 2). Line-
structure extraction by raster-to-vector conversion is
an important process for understanding line-drawings.
However, generally speaking, raster-to-vector
conversion is time-consuming for large drawings
because of the amount of image memory access.
Considering that a significant part of an image in the
raster-to-vector conversion is only the boundary
between black and white regions, the authors have
developed an efficient algorithm for the raster-to-
vector conversion constructed without meaningless

where every pixel is white. That is, using the
algorithm, start points for contour tracking are first
quickly obtained by raster scanning an image. Then, all
image memory accesses in later processing, such as
logical filtering, bending point detection and extraction
of graph-like structure from a drawing, are carried out
merely by contour tracking from the start points.

Next, it is proved that the proposed algorithm is
easily implementated by hardware, while still retaining
flexibility (Section 3). The basic idea for the hardware
implementation is that the raster-to-vector conversion
can be realized by one simple raster scanning access
to an input image and by several processings only
along contours. Thus, the developed hardware is
composed of two parts; one is an accelerator for start
point detection in raster scanning an image, and the
other is for processings with contour tracking. In order
to retain flexibility, the latter part is constructed from a
kernel unit of image memory address calculation for
contour tracking and attached units for processing
during the contour tracking. Setting a flag to an image
memory, logical filtering, bending point detection, and
error calculation of an approximate line have been
implemented as the latter unit.

Finally, effectiveness and flexibility of the proposed
accelerator are discussed, showing experimental
results of automatic extraction of polygons which
represent houses from map images(Sections 4 and 5).

2. Raster-to-vector conversion
based on contour tracking

Raster-to-vector conversion consists of the following
two sub-processes;

(1) Generation of chain-code or (x,y)-coordinate
streams representing the line-structure of a drawing
image. In raster-to-vector conversion, a chain-code
stream and an (x,y)-coordinate stream are equivalent.
This kind of stream is called 'chain-code' for simplicity.

(2) Conversion from the chain-code streams to
vector description, using a straight line or curve fitting
algorithm.

It should be noted that image memory access is
limited in the chain-code generation process (I), which
is regarded as a conversion from two-dimensionally
represented information (image) to one-dimensionally
represented information (symbolical or numerical

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

description). The data amount dealt with in the process
(2), i.e. the line fitting process, is relatively small,
because of the data compression by the former
process. Thus, it is necessary to accelerate the former
process in order to speed up the whole raster-to-
vector conversion time for large drawings. While
several efficient algorithms have been reported
concerning the line fitting process [5,6], there have
been very few reports published on the chain-code
generation process from the raster-to-vector
conversion efficiency improvement viewpoint. Here, the
authors propose a simple and general technique for
raster-to-vector conversion, especially taking into
consideration the improvement of the chain-code
generation efficiency.

Considering a significant part for drawing image
processing is only the boundary between black and
white regions, every operation in the chain-code
generation process can be implemented by iterations of
several operations based on such control as contour
tracking. And the simplicity of the contour tracking
operation enables the realization by a small scale
hardware.

Furthermore, in the line fitting process, an operation
by scanning a chain-code stream, such as bending
point detection by calculating the angle of an arc
composed of three points along a contour [7] and area
calculation of a region constructed by a contour and an
approximate line, is equivalent to a line (skeleton)
tracking operation. Line tracking and contour tracking
are the same operation, in the sense that each tracking
direction is determined by the values of the 8-
neighborhood pixels around a current tracked pixel.

Therefore, almost all the processings in raster-to-
vector conversion can be realized by the operation
based on contour tracking.

. " ; / A start point on an,......,.... , , -.(- , ? external contour

- -- *

Black pixel
Pixel on an external contour 0 E-flag
Pixel on an internal contour I-flag

Fig. 1 Start point detection and external contour tracking

It is trivial that line fitting processing can be
performed based on line tracking. Thus, we concentrate
on the discussion about processings in the chain-code
generation. The following functions are generally used
in the generation.
(a) Connected component extraction.
(b) Noise reduction.
(c) Logical filtering.
(d) Elimination of noise-segments caused by thinning.
(e) Generation of chain-code streams of contours or
skeletons.

We show efficient contour-tracking-based algorithms
for each function.

la) Connected component extraction:
This processing could be implemented by the

conventional region labeling method. However, it is not
practical because a large amount of image memory is
required for a large drawing. Therefore, the following
algorithm is applied to connected component
extraction. The basic idea of the algorithm is that, as
each connected region has one external contour and
several internal contours if it has some holes, the
connected component extraction can be realized by the
detection of external/internal contours.

This algorithm can be described by the following two
steps (see Fig. 1).

(i) Find a point on a contour by scanning an image.
(ii) Track the whole contour starting with the point.
The point which is detected in step (i) is called a

start point for tracking. In order to avoid duplicated
detections of the same contour, it is tracked by setting
flags to a flag memory. Rosenfeld et al. pointed out that
two bits per pixel for I. , flag are required in contour
detection when a line drawing has several holes 181.
However, this paper shows that one bit is sufficient.
Furthermore, as there is not a discussion to identify
which detected contour is external or internal, it is also
proved that the identification is easily realized.

The start point is defined as the first detected point
on the contour in raster scanning a image, whose right
or left neighborhood is white. A flag at every tracked
pixel is set in both external and internal contour
tracking (this flag is called the e-flag). If every
external and internal contour are disjoint, only e-flag is
necessary to avoid the duplicated detection. Another
flag (caIled the i-flag) is prepared for general situation,
where common pixels exist betweeen external and
internal contours. The condition for setting the i-flag is

1 Black pixel
0 White pixel
* Don't care

(a) 0)
Fig.2 Necessary conditions for

external start point(ES) and internal start point(1S)

IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

that, in both external and internal contour tracking, the
right neighborhood pixel is white and this white pixel
belongs to the current observing white region. And the
location of the i-flag is at this right neighborhood white
pixel (see Fig. 1). Then, the necessary and sufficient
condition for a start point can be described as follows:

(i) A start point of an external contour is a pixel
whose 8-neighborhood pattern is matched to Fig.2 (a),
and whose e-flag (i.e. a flag at ES in Fig. 2 (a)) is not
set.

(ii) A start point of an internul contour is a pixel
whose 8-neighborhood pattern is matched to Fig.2 (b),
and whose i-flag (i.e. a flag at IS1 in Fig.2 (b)) is not
set.

There is no collision between an e-flag and an i-flag,
because the e-flag is set at a black pixel and the i-flag
is set at a white one. Therefore, only one bit per pixel
is sufficient in the algorithm. This flag manupilation can
be easily accomplished by a table look-up method with
8-neighborhood values and a tracking direction.
fb) Noise reduction:

A noise region, such as a salt-and-pepper noise, and
a character region in a drawing image which is not
needed to be vectorized, are defined as a small
blacwwhite region. It is sufficient for such noise
reduction that the start point information for a short
contour is deleted from the start point table, except
that an operation which alters an input image, such as
thinning, must be carried out after the nose reduction.
In the case, pixels inside the short contour must be
altered.
lc) Logical filtering:

Every logical filtering operation can be performed in
contour tracking. If the operation is topologically
invariant with regard to input image, such as thinning
and branchlterminal point detection, it can be easily
implemented by contour tracking. That is, it is carried
out by a repetition of a table look-up method with
neighborhood values of each tracked pixel. Several
thinning algorithms by contour tracking have been
reported[9,10]. If the operation is not topologically
invariant, such as shrinking, the control for the
operation is complicated because the start point table,
which represents the topological information for an
input image, must be altered in each operation.
(d) Elimination of noise-segments caused by thinning;

Occurrence of noise-segments can not be avoided in
a thinning operation. Such noise-segments, which are
defined as a short line, can be deleted by line tracking.
.(e) Generation of chain-code streams of contours or
skeleton:

It is trivial that a chain-code can be generated by
contour or line tracking.

Based on the above discussion, it can be concluded
that every processing in raster-to-vector conversion
can be realized by

(i) a raster operation for start point detection, and
(ii) operations which are carried out by contour

tracking.
The latter operation is composed of a kernel part,
which calculates the frame memory address for contour

tracking, and several attached processing parts during
contour tracking.

3. An accelerator
for raster-to-vector conversion

A two-level hierarchical architecture has been
designed for the raster-to-vector conversion discussed
in the previous section. The design concept is that
every operation involving image memory access by
contour tracking is implemented by a special hardware
(accelerator), and the control of the operation is carried
out by a micro-processor. Fig. 3 shows a block
diagram of the developed hardware system. The
system consists of hierarchical processing units of the
micro-processor and the accelerator, and 8K x 8K pixel
frame memories, which can store the entire image of a
JIS (Japanese Industrial Standard) A1 size (841 x 549
mm) drawing scanned at 200 dots per inch.

The micro-processor unit (MPU), which is composed
of MC68020, first drives the accelerator to generate a
start point table. Then, by controlling the accelerator
with the start point table, the MPU proceeds with a
chain-code generation process and a line fitting
process.

The accelerator consists of two units. One is for start
point detection and the other is for contour tracking
operation.

The start point detection unit is first driven in raster-
to-vector conversion. It uses two frame memories in
the operation; one is for an original input image and the
other is for a flag. According to the discussion in the
previous section, a start point for an external contour
must be a black pixel whose left hand neighbor is
white and the flag is not set at this black pixel, and,
vice versa, a start point for an internal contour must be
a black pixel whose right hand neighbor is white and
the flag is not set at the white pixel. Therefore, the unit
is designed so that the only x-directional changes in
value can be detected quickly. That is, the frame
memory is designed so that x-directionally successive

Micro-processor unit
(mu)

Raster-to-vector
conversion v i
accelerator

Start point detection
unit [I , - Frame memory

Fig.3 Block diagram of fast raster-to-vector
conversion system

IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

16 pixels can be simultaneously accessed. While the
unit reads the successive 16 pixels of the frame
memory, in which an original image is stored, it detects
value change pixel(s) among them. If there is no such
pixel in it, the unit accesses the next 16 pixels and
tests them. Otherwise, the unit reads the
corresponding flag frame memory and tests whether a
flag is set. If there is not a flag, the unit informs start
point detection to the MPU (see Fig. 4).

The contour tracking operation unit is driven by the
MPU according to the start point table. That is, the
MPU first indicates such initial conditions as the
location of the start point and the initial direction for
tracking. The MPU next starts contour tracking. The
unit is designed so that one of such operations as
logical filtering, angle calcuIation, and error calculation
between a contour and an approximate line, can be
performed during tracking. The unit continues the
operation until a terminal condition is satisfied, such as
arriving at a specified point by tracking, a processing
region limit, or the limit number of pixels to be tracked,
which is set by the MPU at the start of the operation.

According to the discussion in the previous section,
the unit consists of a kernel part which calculates the
frame memory address for contour tracking, and
attached parts for processing during contour tracking.
The kernel part is composed of the following four parts
(see Fig. 5).

(1) Sequencer (controller).
(2) Cash memory.
(3) Frame memory address controller.
(4) Tracking direction tables.
In order to speed contour tracking, a method has been

proposed wherein the 8 neighborhood values are
assembled to one byte, has been proposed [ll].
However, by this method, 8 bits are needed for every
pixel in a frame memory. Therefore, a cash memory is
used for fast contour tracking. The size of cash memory
is 9 (= 3 x 3) bits, and the value of tracked pixel and its

Fig.4 Start point detection unit

neighborhood values are stored. The next tracking
direction is obtained by the tracking direction table
according to the nine bit code of the cash memory and
previous tracking direction. Then, the sequencer
changes the frame memory address of the tracked
pixel. In changing the address, the contents of the cash
memory are altered efficiently in a way that only three
or five bits of cash memory are loaded from the frame
memory. Simultaneously, one of the attached
operations is also performed.

The tracking contour order is determined by the
tracking direction table. That is, the next address in
contour tracking is determined by the values in the
cash memory and the previous tracking direction. By
changing the table content, both Cconnected and 8-
connected tracking is selectable.

As the attached operations, an operation of setting a
flag to a frame memory, logical filtering, angle
calculation, and error calculation for line fitting have
been implemented.

The flag setting operation is carried out by the
sequencer according to a condition set by the MPU.

The 3 x 3 logical filtering operation is carried out with
the values in cash memory and a logical filtering table.
This operation is mainly used in thinning, and the
detection of terminal and branch points from a thinned
line.

In the angle calculation unit, the angle of an arc
composed of three points along the contour is obtained.
If the angle is less than a threshold value, its value and
the location of the arc are memorized as candidates for
a bending point.

In the error calculation unit, the area of the region
constructed by a contour and an approximate line,
which is used for evaluating of the approximation, is
calculated.

+ I

I Sequencer

Fig. 5 Configuration of contour tracking unit

IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

4. A map image analysis
with raster-to-vector conversion

As an example of practical applications using the
proposed raster-to-vector conversion, the following
presents an automatic extraction of polygons
representing houses from map images. (These
polygons are called 'house-polygons' from now on.)
An automatic extraction of house-polygons is very
useful for the initial data entry to a geographic
information system. For example, in a 112500 map for
urban planning, whose sheet size is 800 x 600 mm,
there are about ten thousand house-polygons, and
more than 70% of all vectors in a map includes in
house-polygons.

The extraction process consists of two sub-
processes. In the first process, candidates for house-
polygons are extracted with the proposed accelerator.
Here, the accelerator is efficiently used. That is,

(1) Internal contours in a map image, which are
candidates of house-polygons, can be extracted at very
high speed by the accelerator, and

(2) Bending points of internal contours, which are
important features in house recognition, are found very
fast.

Then, in the second process, the MPU identifies true
house-polygons by the following features;

(a) A house-polygon has at least four comers with
about 90 degree angles.

(b) A polygon shape is simple in a sense (the
simpleness measure is defined as (area)l(perimeter)
**2 in this process).

(c) The polygon size is within some specific range.
The raster-to-vector conversion for house-polygon

extraction is explained in detail. First, the start-points
for both external and internal contours are quickly
searched for by the accelerator. The locations of the
start points are stored in a table. In this process, two
start point tables are made; one is for external

contours, and the other is for internal ones. Thinning
operation is carried out only on internal contours. It is
continued until half of the line is thinned. The resultant
internal contours can be regarded as skeletons of the
original lines. Finally, the bending points of the
contours are detected using the accelerator. Here, a
comer is defined as a bending point with a sharp angle
less than 120 degrees. A sequence of the obtained
comer locations (x-y coordinates) for each internal
contour is memorized as a candidate for a house-
polygon.

In the second process, the candidates are
distinguished from other polygons by testing the
condition (a)-(c).

5. Experimental Results

An experiment was carried out using several 1/2500
maps for urban planning, scanned at 200dpi. Fig.6
shows the result of automatic house-polygon
extraction from a map.

Table 1 shows the average processing time per map
when using the accelerator and when using only the
MPU which directly accesses to the frame memory.
As a result, a reduction of about 90% in raster-to-
vector conversion time was obtained.

The accuracy of the house-polygon extraction
algorithm described in the previous section is shown in
Fig.7. In the first process, 2% of true house-polygons
could not be detected, while 33% of the detected
polygons did not correspond to true houses. The
second process eliminated 64% of such mis-recognized
polygons. The failure of extraction in the first process
was mainly due to the disconnection of internal
contours by inserted characters or by noise. The

Table 1 Processing time for raster-to-vector conversion

f true house-polygons \ , 2%

Connected
component
extraction

Thinning

Angle
calculation

By MPU

754 sec

190 sec

286 sec

other

Fig. 6 A result of house-polygon extraction Fig. 7 Extraction accuracy

By accelerator

18.5 sec

12.6 sec

21.6 sec

98%
f polygons \

First process 33% 67% - - - .
85% Second process

IAPR Workshop on CV -.Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

reason for over extraction of the second process was
that the constraints for the recognition were a little
weak.

6. Conclusions

A new technique for raster-to-vector conversion,
which efficiently uses only contour tracking operations,
has been proposed, and an accelerator for the operation
has been developed in order to speed up raster-to-
vector conversion.

By using the accelerator, reduction of about 90% in
raster-to-vector conversion time was obtained from
the experimental results of automatic extraction of
polygons which represent houses from map images.

The developed accelerator can be widely applied to
line-drawing processing in such fields from digitization
and vectorization to feature extraction for drawing
understanding.

References:

[l] K.Ramchandran: "Cording Method for Vector
Representation of Engineer Drawings", in Proc. IEEE 68, pp.
813-817 (1980).

[2] M.Ejiri et al.: "Automatic Recognition of Design Drawings
and Maps", in 7th ICPR, pp.1296-1305 (1984).

[3] M.T.Musavi et al.: "A Vision Based Method to Automatic
Map Processing", in Pattern Recognition, vo1.21, 110.4, pp.
319-326,(1988).

[4] A.Okazaki et al.: "An Automatic Circuit Diagram Reader
with Loop-structure-based Symbol Recognition", in IEEE
Trans. on PAMI, vol. 10,110.3, pp. 331-340, (1988).

[5] C.M.Williams: "An Efficient Algorithm for Piecewise
Linear Approximation of Planar Curves", in Proc. Comput.
Vision, Graphics, Image Processing, vol. 8, pp.286-293
(1978).

[6] K.Wall and P.E.Danielsson: "A Fast Sequential Method for
Polygonal Approximation of Digitized Curves", in Proc.
Comput. Vision, Graphics, Image Processing, vol. 28, pp.
220-227 (1984).

[71 A.Rosenfeld and E.Johnston: "Angle Detection on Digital
Curves", in IEEE Trans. Comput., vo1.C-22, (1973).

[8] A.Rosenfeld and A.C.Kak: "Digital Picture Processing",
Academic Press, New York, (1982).

[9] C.Arcelli: "Pattern Thinning by Contour Tracing", in Roc.
Comput. Vision, Graphics, Image Processing, vo1.17, pp.
130-144, (1981).

[lo] T.Pavlidis: "An Asynchronous Thinning Algorithm",in
Proc. Comput. Vision, Graphics, Image Processing, vo1.20,
pp.133-157, (1982).

[l l] 1.Sobel: "Neighborhood Coding of Binary Images for Fast
Contour Following and General Binary Array Processing",in
Proc. Comput. Vision, Graphics, Image Processing, vol. 8,
pp.127-135 (1978).

