
IAPR Workshop on CV - Special Hardware and Jndustrial Applications OCT.12-14. 1988. Tokyo

PICAP3 - A coarse-grain linear SIMD-array

Per-Erik Danielsson, Bjorn Lindskog and Jan Segerstrom

Linkoping University
Department of Electrical Engineering

S-581 83 Linkijping, SWEDEN

ABSTRACT

We give a brief description of the overall architecture
of PICAP3. The enhanced processor module has full
floating-point arithmetic and a 32 module machine will
achieve a peak performance of 320 MFLOP. We show
how the linear organization and the local address
modification can be used efficiently for algorithms like
FFT, Transposition, Histogramming, Convolution and
Binary image processing. PICAP3 is orders of magni-
tudes faster than most commercially available sys-
tems.

INTRODUCTION

PICAP3 is a hardwarelsoftware low-budget project in
parallel processing. Its roots are buried in a rather
long tradition in computer design and architecture,
most of it related to image processing and computer
vbion. However, the architecture of PlCAP 3 has very
little in common with its predecessors [I], [2], [3], [4].
The most salient features of PICAP3 are the following
[5], [6]. See Figure 1.

Linear processor - processor connec-
tion. This is inexpensive and rather fast as
long as the number of processors (P) is
reasonably small. End-around word-wide
bidirectional links constitute a quite powerful
transportation highway as will be shown be-
low.

High speed Il0-communication. The lin-
ear organization makes it possible to attain
input/output bandwidths equal to the proc-
essor/memory bandwidth. In the present im-
plementation we are satisfied with a 40
MBIs data rate which typically occupies
5-10 % of available memory bandwidth.

A powerful, carefully designed control
unit. The control unit design is crucial. It
has to supply the processor array with a
constant flow of microinstructions, ad-
dresses and constants. The present design
is capable of translating a logical three-
component address into a physical address
at full memory cycle rate.

SIMD (Single Instruction Multiple Data Local address modification. The globally
stream). This was a natural decision since issued address from the control unit can be
the main target applications were in low and modified locally. Table look-up functions is
medium level image processing. just one of several exploitations of this fea-

Coarse granularity. We deliberately ab-
stained from customized VLSI-design.
Therefore, to get as much processing
power as possible per chip, each process-
ing module is a 32-bit parallel ALU made
from off-the-shelf components.

Direct processor-memory interconnect.
The power of all parallel architectures
stems from a high memory bandwidth. We
don't want to degrade this bandwidth by in-
troducing an interconnection switching net-
work. More importantly, such a network de-
stroys the perfect modularity.

ture. It considerably enhances the perform-
ance of the SIMD-system and enlarges the
space of amenable applications. Since it

t t IKI- 1111~

divplny

IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

has not been implemented in bit-serial
SlMD arrays, the power of this feature is not
generally well understood.

A large memory, typically 4 MBlprocessor.

Moderate physical size. A 32 module ar-
ray fits on 8 PC-boards, the control, super-
visory processor and network interface on
another pair of PC-boards.

The present operational PICAP3 prototype is de-
scribed in [5]. It contains only two processors. Cur-
rently we are designing an upgraded version of the
processor module which will be described in the next
section. For this design performance numbers from
simulated execution will be given for a few algorithms.

THE NEW PROCESSOR MODULE

The new processor module is shown by Figure 2. All
data paths are 32 bit and data transfers take place via
the multi-ported register file RF (64 32-bit words).
Global addresses and constants are pumped out from
the control unit and enters the PE over the Global bus.
This bus is bidirectional and may also be used to get
values from the PEs. Once the address is inside RF, it
may be modified by the ALU or directly used to ac-
cess the memory. After two cycles data is available in
the communication register (CR) and may be option-
ally transferred (in one extra cycle) to the left or right
neighbor.

110 bus
Memory

ported register file serves the purpose of widening the
data path from memory (5 MWIs) into a full seven bus
system (70 MWIs). it also enables concurrent compu-
tation and memory accesses. By proper allocation of
input, intermediate and output operands this gives a
processing speed of 10 MIPS or 10 MFLOPS per PE

FFT

The basic operation in most FFT operations is the ra-
dix-2 butterfly. With each input being a two-word
complex floating-point number (like the twiddle factor
o) the butterfly is executed in 10 cycles (four multipli-
cations and six additions).

To bring the operands out and the result back to
memory takes 16 cycles (four read and four write op-
erations). However, this presumes that the coefficient
o is brought forward as a global constant from the
control unit. If not, we need two more memory cycles
to get it from the local memory. This gives 20 cycles.

Clearly, even if we use optimal overlap of memory and
processor activity we are bounded by the memory ac-
cess cycles when computing one butterfly at a time.
When more than two points are included in each com-
putation, the situation improves. An eight-point FFT is
formed by 12 butterflies which takes 120 cycles. The
intermediate results can be kept in the register file so
that only 16 memory reads and 16 memory writes are
needed. To pick up the us takes an extra 24 reads
and a total of 112 cycles are needed for memory ac-
cesses.

The situation is now processor-bounded so that we
obtain exactly

1 M Butterfly/s (1 MBUTT) per PE

Let us now assume that all input data for an N-point
FFT reside in the local memory of the individual PE. A
1024 complex input data FFT then takes 5.12 ms. As-
suming a 32 processor system we obtain an efficient
throughput of

right
left neigbor b-1- neighbor

1024 complex input FFT in 0.16 ms

Global bus
Figure 2

The arithmetical unit consists of a floating-point sub-
unit, an integer subunit and an integer multiplier-accu-
mulator, all three operating on 32-bit data. Both the
register file and the ALUs are non-pipelined devices
so that a full integer or floating-point operation can
always be performed in one cycle time. The multi-

The 2D FFT on a 512 x 512 complex data image is
decomposed into two passes of 1 D FFTs over the col-
umns of the image. The second pass is preceded by
a transposition (see below) and the total time is

lAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

TRANSPOSITION. CORNER TURNING.

Evidently, there are numerous cases in a parallel sys-
tem where data has to be rearranged in order to pro-
ceed with the computation in the most efficient way.
One common operation is the so called corner turning
which is illustrated by Figure 3 with an 8 x 8 matrix of
data points. To beqin with the leftmost PE contains
data points 0, 8, 16, 24, 32, 40, 48, 56. After the
transposal it contains 0, 1, 2, 3, 4, 5, 6, 7.

By proper use of local indexing we can move data
over the leftlright neighbor network in a rather efficient
manner.The main trick is to bring out those data
points at the same time that are to be moved the
same horizontal distance [4]. [5]. This is made possi-
ble by local indexing. Note that the average distance
data has to travel is Pl4.

N 32-bit words can then be corner-turned in a 32 PE
machine using

N32 (4 + 3214) = N . 318 cycles

where each word requires four cycles for memory ac-
ceses. This formula translates directly to 19.7 ms for
the complex 512 x 512 image in the previous section.

Figure 3

IMAGE PROCESSING

We will briefly describe three algorithms; Histogram-
ming, Convolution and Binary operations.

Histogramming is performed as follows. In the first
step all processors compute their local histograms.
Two memory reads and one write are needed per
pixel. Thus, to collect 32 local histograms of a
512 x 512 image it takes

6 . 512 . 16 = 49152 cycles or 4.92 ms

histogram. Assume a simple case of four PE's and 8
entries in the table as shown in Figure 4.

Figure 4

In the first pass, half of the 8 entries are moved one
step and accumulated, in the next pass half of the
remaining 4 entries are moved two steps and accumu-
lated etc. With 32 PEs the total number of memory
reads is 31N116, memory writes 31NI32, and shift
steps 5N2. This totals

N . 133116 = 2128 cycles or 0.21 ms
for N = 256 (8 bitlpixel)

We note that the merging time is negligible.The effec-
tiveness of this merge procedure can be exploited in
many other algorithms besides histogramming.

Convolution. We will here show the very common 3 x
3 filter.

The image is distributed in slices over the PE's. The
neighborhoods for the border pixels overlap to the
neighboring PE's but the time penalty for fetching from
left or right is negligible. We may now proceed as
shown in Figure 5 by keeping an input buffer holding
the nine latest used input pixels.

Figure 5

With this scheme, we see that there is only three
The second Step is to merge these data into a single memory reads and one memory write per result. With

IAPR Workshop on CV - Speaal Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

9 multiplylaccumulate and one final adjustment opera-
tion using the integer multiplier-accumulator we will be
able to do one 3 x 3 kernel operation in 10 cycles.
Since the memory accesses take 8 cycles, the opera-
tion is obviously processing bounded and the total
execution time for a 512 x 512 image is

Binary image processing. Using the integer ALU, the
image data is packed ie a sequence of 32 vertical
pixels is stored in one word. Without giving a full
analysis, this can be done as fast as the pixels can be
read out from the memory [5].

A 3 x 3 binary operation could now be executed as
follows. See Figure 6 with the buffering method similar
to Figure 5. Around the central 32 pixel word we put
together a new 32-pixel word shifted one bit up and
another one shifted one bit down. For each new set of
32 3 x 3 neighborhoods these two operations have to
be carried out which take four cycles [5].

cost, time and effort by using off-the-shelf compo-
nents, we get simplicity in operation and control from
the Single Instruction Multiple Data stream mode and
we get high 110-bandwidth from the linear organiza-
tion.

The best illustration of these and other features of the
machine is the following list of estimated processing
times. All numbers are given for a 32 PE machine.
Previous experience indicates that the real execution
times are about 10 % slower mainly due to deficien-
cies in the control unit.

FFT
1024 complex data
512 x 512 complex data

Transposition 512 x 512 8 bit data
Histogramming 512 x 512

8 bit pixel
12 bit pixel

Convolution 512 x 512, 16 bit pixel
general 3 x 3 kernel
Sobel

Binary 51 2 x 51 2, packed data
Expand, shrink per step
Thin, per step

REFERENCES

[I] Kruse, B.: "A Parallel Picture Processing Ma-
chine", IEEE Transactions on Computers, Vol.

32 3x3 neighborhoods C-22, NO. 12, p. 1075, 1973.

[2] Kruse, B., Danielsson, P.E. and Gudmundsson,
Figure 6 B.: "From PICAP I to PlCAP II", in Special Com-

puter Architectures for Pattern Processing, K.S.
Then, we are ready to use the logic operations in the Fu and lchikawa (eds.), CRC Press Inc., 1982.
ALU. Ordinary expand (dilate) or shrink (erode) take 8
cycles in total. This is enough to overlap the memory [3] Danielsson, P.E.: "Vices and Virtues of lmage
cycles so that the time for a 512 x 512 expandlshrink Parallel Machines", in "Digital Image Analysis",
becomes Levialdi. S. (ed.), Pitman, 1984.

512132 . 512132 . 8 = 2048 cycles
or 0.20 ms

A thinning operation is more complex and requires ap-
proximately 1.5 ms per step.

Effectively, we are using the 32 PE's as
32 x 32 = 1024 separate units for logic evaluation. It
is therefore not surprising that the performance is as
good or even better than for bit-serial SlMD arrays.

DISCUSSION AND SUMMARY

In the design of PICAP 3 we have tried to exploit two
important trends in high speed computing: Very Large
Scale Integration and Parallel Processing. We save

[4] Danielsson, P.E. and Ericsson, T.: "LIPP - Pro-
posals for the Design of an lmage Processor
Array", Chapter 11 in "Computing Structures
for lmage Processing", Duff. M. (ed.), Aca-
demic Press. 1983.

[5] Lindskog. B.: "PICAP 3. An SlMD Architecture
for Multidimensional Signal Processing",
Linkdping Studies in Science and Technology,
Dissertations, No, 176, ISBN 91-7870-305-0,
1988.

[6] Lindskog, B. and Danielsson, P.E.: "PICAP 3.
A Parallel Processor Tuned for 3D lmage Op-
erations", Proc. 8th International Conference
on Pattern Recognition, Paris, France, 1986.

