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Abstract 

In this paper we describe an approach to detect and 
predict the driving trajectory of a preceding vehicle on 
highway. In particular, we focus on detecting and 
predicting the changing lane intention and action of the 
preceding vehicle. Our algorithm employs SVM for driving 
pattern recognition by integrating two different cues: 
motion cue and appearance cue, which is trained on two 
class feature sets extracted from examples of lane 
changing and lane keeping video sequences. The method is 
evaluated on the real-world data collected in an intelligent 
vehicle test-bed. The method is applied to a vision-based 
safety driving system, which tracks the lane, the preceding 
vehicle, and uses the vehicle lane-change warning to serve 
for other intelligent vehicle controls. 

1. Introduction 

Detecting and predicting vehicle-moving intention can 
provide valuable information for any intelligent vehicle 
and driver support system. However it is a challenging 
problem since a vehicle’s move is affected by many factors, 
such as traffic/road conditions as well as driver’s behavior. 
In this paper, we formulate the problem as a pattern 
classification problem on dynamic scenarios. Video 
processing based intelligent system for vehicle driving 
safety control has achieved significant progress in recent 
years, but the majority of applications are focused on 
analyzing either the stationary environment (e.g. the lane 
finding) or detecting the stationary or moving obstacles 
(e.g. vehicle or road sign) within the area of interest [1][9]. 
There are works done lately on driver’s intention inferring 
[2][3], by using multi-modal data (e.g. road scene, CAN 
data, eye movement, etc.), which leads to predicting 
vehicle’s lane changing move ahead of time. However, the 
work is mostly applied to a host vehicle instead of a front 
(target) vehicle, in which the driver can’t be closely 
monitored and there is no specific sensor available.   

In this paper we describe our work to classify the 
preceding vehicle driving-pattern, with emphasis on 
detecting and predicting the lane change intention. Our 
method is based on image processing for scene feature 
extraction, queuing lane-vehicle position data for 
lane-changing and lane-keeping classification. We 
implemented the algorithm in a vision system, which takes 
the feed from a monochrome camera for real-time video 
acquisition. The scenario of the video processing involves 
real-time lane following, ground plane extraction, and 
host-vehicle 3-D pose estimation. By using the lane 
geometry constraints, the algorithm detects, verifies, and 
tracks the preceding vehicles. The time-stamp augmented 

Figure 1. Vehicle lane-change warning output 

3-D trajectory of a tracked vehicle is used for 
lane-changing recognition by Support Vector Machine 
(SVM). The method is tested significantly on real-world 
data collected on highways. Figure 1 shows an example of 
our system output on a scene where a preceding vehicle is 
detected and tracked and it’s lane-changing move is
warned in real-time. 

2. Vision system architecture  

The block diagram of our vision system architecture is 
shown in Figure 2. In this section, we briefly describe the 
algorithms and functions of each module. 

2.1. Lane detection and tracking 

For lane feature extraction, we first calculate the 
Laplacian image in the regions defined around lane’s 
boundary. Then we apply two thresholds to the result 
image to generate a tri-valued pixel map.  Boundary 
features are extracted by matching the pixel map to a lane 
boundary template. The features are then used to fit a 
quadratic function. We use a Kalman filter (KF) to track 
the motion of the lane boundary. From frame to frame, the 
boundary locations are predicted by the KF, new features 
are extracted to refine the boundary function and update 
the KF states. 

2.2. Ground plane estimation 

The vanishing point, which is defined as the intersection 
of two tracked lane boundaries, is used to estimate the 
pitch angle change of the camera. The estimated angle is 
then used to update the camera projection matrix M, which 
is obtained via a pre-calibration (extrinsic) process. The 
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incremental pitch estimation is shown in the following 
equation, where Vy1 and Vy2 are vanishing point in image y 
position from consecutive frames, fy is the camera’s lens 
focal length, and θ and ∆θ correspond to camera pitch 
angle from calibration settings and incremental change 
from frame to frame. 

In our 3-D coordinate system, Z-axis is defined as pointing 
towards front; X-axis is pointing to right; and Y-axis is 
pointing down. We define the ground as Y=0.0 in 3-D 
space. Under this definition, all the ground points (X, 0, Z) 
in the scene can be mapped to image I(u, v) by using M: I(u, 
v) = M(X, 0.0, Z). The inverse transformation, M

-1
, is also 

computed to map image points to 3-D ground: (X, Y=0.0, 
Z) = M

-1
(u, v). 

Figure 2.  Vision system diagram 

2.3. Vehicle detection, verification and tracking 

  Using the 3D constraints from the vanishing point, lane 
boundaries, and ground plane, a search region is defined 
for preceding vehicle search. Canny edge operator is 
applied to search region for horizontal and vertical line 
extraction. The line features are assembled to make 
candidate vehicle hypotheses, which are then confirmed by 
the verifier. Verifier employs a SVM with HOG 
(Histogram of Oriented Gradient) feature [10] for vehicle 
recognition. A pre-learned vehicle model database is used 
by the SVM. Upon passing the verification, the vehicle is 
handled over to a tracker, which is implemented using KLT 
[4] algorithm. In each frame, the central bottom of the 
tracked vehicle is used to calculate it’s 3D position, e.g. the 
distance (to camera) and the offset (to lane center) in the 
scene by the transformation M, as described in previous 
section.  

2.4. Vehicle motion classification 

  To describe a vehicle’s moving behavior, two sets of 
vehicle driving training sequences (one for changing lane 
and the other for staying-in lane) are collected from 
highway traffic to train a SVM classifier. In run-time, the 
3D trajectory of the preceding vehicle is fed to the SVM 
for driving intention recognition.  Details of the algorithm 
are described in section 3. 

3. Moving pattern classification algorithm 

  We infer the change lane intention of preceding vehicle 
from a pattern recognition perspective; namely, given a 
numbers of features of preceding vehicle, how can we infer 
or classify its change lane intention: lane changing (either 
left or right) and lane keeping. 

   What type of feature to use is a key step in classification 
task. Unlike the previous work on inferring host vehicle’s 
intention, where there are plenty of data available, we only 
have very limited data for the preceding vehicle. In this 
work, both motion cue and appearance cue of the 
preceding vehicle are introduced and incorporated as the 
feature to infer its lane changing intention. 

3.1 Motion Cue: Vehicle Motion Trajectory Relative 
to Lane Center 

  After detecting the lane boundaries and tracking the 
preceding vehicle in other modules of the vision system, 
the direct feature for lane changing is the vehicle motion 
trajectory relative to the center of the lane. More 
specifically, when the preceding vehicles intends to change 
lanes, its relative distance to the lane center tends to take 
some specific patterns or trends as illustrated in Figure 4, 
which makes the vehicle trajectory a good feature to reveal 
the lane change intention. 

  We define the central-bottom of the tracked vehicle as its 
position. We map both vehicle’s position and the lane 
boundary to 3-D for trajectory computation. Vehicle’s  

Figure 3: Vehicle trajectory computation  
at straight and curved lane 

position in 3-D is calculated with respect to the center of 
the lane, as shown in Figure 3.  

  In straight lane case, as shown in top row in Figure 3, the 
bottom of the vehicle position in image (x, y), is mapped to 
world coordinate (X,Y). If we draw a horizontal line 
through this point, the line will intercept with lane 
boundaries at location X1 and X2, at the same distance Z. 
The lane center location is ((X1+X2)/2, Z). Vehicle’s 
trajectory position, w.r.t. the lane center, is calculated as 
(X-(X1+X2)/2, Z). In curved lane case, as shown in bottom 
row in Figure 3, the bottom of the vehicle position in 
image (x, y), is mapped in the same manner to world 
coordinate (X,Y). Since the pose of the vehicle is now 
parallel with lane curvature (1/R), the intercepting line 
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now needs to be rotated 1/R° and intercepts with lane 
boundaries at (X1, Z1) and (X2, Z2), where Z1 and Z2 are 
different. The lane center location is ((X1+X2)/2, 
(Z1+Z2)/2). Vehicle’s position, w.r.t. the lane center, is 
calculated as (X-(X1+X2)/2, Z-(Z1+Z2)/2). 
   

Figure 4.  Typical preceding vehicle motion trajectories: 
top – staying in lane (scaled up to show small variations); 

bottom – changing to right (gray) and left (black) lane.

3.2 Appearance Cue: Vehicle Appearance Change 
Relative to Tracking Template 

   When the preceding vehicle intends to change lane, its 
appearance of the rear part also changes due to the rotation. 
This makes appearance change also a strong cue to predict 
the lane change intention. To represent the appearance 
change, we use the tracking results. 

   We use KLT tracker for tracking the preceding vehicle. 
This method minimizes the following error between the 
pre-established template and the sub-region in the current 
frame: 

Where warping parameter p=(p1, p2, p3, p4, p5, p6) 
represents the transformation from the template to the 
sub-region in the image, W(x;p) is the warping function, 
T(x) is the online template.  

Therefore the appearance relationship between the 
current tracked preceding vehicle and the template is 
encoded in the warping parameters, which can be used as 

the representation for the appearance change during the 
lane changing process. 

3.3 SVM Classifier 

Since the vehicle may change lane at different lateral 
offset from the lane center, one decision can’t be obtained 
by simple thresholding. In this paper we choose the 
support vector machine [5,6] as the classifying function. 
The Support Vector Machine (SVM) is a statistical 
learning method based on the structure risk minimization 
principle. Its efficiency has been proven in many pattern 
recognition applications [5,7]. In the binary classification 
case, the objective of the SVM is to find a best separating 
hyperplane with a maximum margin. 

The form of a SVM classifier is: 

where x is the feature vector of an observation example, 
}1,1{ −+∈y  is a class label, ix  is the feature vector of  

the 
th

i  training sample, N is the number of training 
samples, and ),( ixxK  is the kernel function. The weight 

},...,,{ 21 Nαααα = and constant b are computed 
through the learning process. 

  One distinct advantage of this type classifier over 
traditional neural networks is that support vector machines 
achieve better generalization performance. While neural 
networks such as multiple layer perceptrons (MLPs) can 
produce low error rate on training data, there is no 
guarantee that this will translate into good performance on 
test data. Multiple layer perceptrons minimize the mean 
squared error over the training data (empirical risk 
minimization) where support vector machines use an 
additional principle called structural risk minimization [6]. 
The purpose of structural risk minimization is to give an 
upper bound on the expected generalization error. 

Compared with the popular Adaboost classifiers, SVM 
is slower in the test stage. However, the training of SVM is 
much faster than that of Adaboost classifiers. 

4. Experiments 

4.1 Training 

Our training image sequences are collected by 
cooperation of two cars, in which the preceding car 
intently frequently changes lane. From these sequences, 
we cropped ~200 clips. Each of these clips corresponds to 
one lane-change occurrence and they are used as the 
positive training samples. We also cropped ~300 clips 
when the preceding vehicle staying in the lane and use 
them as initial negative training samples.  

One issue with using SVM for lane change detection 
was that lane changes do not have fixed time length. Lane 
changes vary anywhere between 1 to 5 seconds and thus 
the corresponding clips having different number of frames. 
Direct temporal mapping between the data and SVM 
classification is not possible. Longer lane changes see a 
smooth transition in features values like straight motion 
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trajectory; whereas shorter ones have a relatively abrupt 
transition. So we normalize the entire lane-changing 
feature by either interpolation or extrapolation.  

One very important issue in the classifier training for 
one object class is how to select effective negative training 
samples. As negative training samples include all kinds of 
images, a prohibitively large set is needed in order to be 
representative, which would also require in feasible 
amount of computation in training. To alleviate this 
problem, a bootstrapping method, proposed by Sung and 
Poggio [8], is used to incrementally train the classifier as 
illustrated in Figure 5. 

Figure 5.  The bootstrap training schematic. 

Even the preceding vehicle may change to either left 
lane or right lane; we can train only one classifier for 
changing to left lane since after reverse the signs of all the 
feature values, this classifier can be used to for changing to 
right lane. Therefore, we convert all the positive training 
samples corresponding to right-lane change to left-lane 
change and train one classifier. 

4.2 Testing 

  We test our algorithm on a two-hour-long sequence 
captured on freeway. In the testing stage, we keep a 
20-frame long feature buffer for the tracked preceding 
vehicle to store its motion trajectory and appearance 
change. Once this feature buffer is classified as changing 
lane, a reminding is displayed as illustrated in Figure 1. 

To show the performance improvement achieved by      

Figure 6. ROC curves for the system. 

incorporating the two different cues, we compare the 
performance of the change-lane warning module by 
turning on and off the appearance change cue. In Figure 6, 
we show the two ROC curves corresponding to turning on 

and off the appearance change cue when inferring the 
change lane intention of the preceding vehicle. From these 
comparisons, we can clearly see that the incorporation of 
the two cues improves the performance.  

5. Summary and Conclusion 

In this paper, we discussed in details the method we 
have proposed for inferring the change lane intention of a 
preceding vehicle. The algorithm has been extensively 
tested on real-world data. The experiment results show that 
the method works reliably using multiple image cues, 
which are extracted from lane-vehicle tracking process. 
The whole system achieves about 10 Hz running speed on 
a PC with Intel 1.8 GHz Duo-Core CPU. 
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