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Abstract

For controlling a vehicle or a mobile robot which moves

around on the ground, to estimate the plane parameters

(i.e. the distance and plane normal) of the ground plane

is an important issue. In this paper, we propose an ef-

ficient and robust method for plane parameter estimation

from stereo images. Our approach is based on a “direct”

method, which makes full use of pixel data in two image re-

gions, for estimating the plane parameters. We formulate a

fast direct method for the plane parameters by incorporat-

ing inverse compositional expression into the SSD function

between two images. The proposed method is about eight

times faster than the conventional method without loss of

precision, and has the advantage of more robustness and ef-

ficiency to a method based on the ICIA algorithm of homog-

raphy estimation. The validity of the proposed method is

demonstrated through experiments using synthetic and real

images.

1. Introduction

To obtain the 3D geometric parameters (i.e. the distance

and the plane normal) of the ground plane is an important is-

sue for controlling a vehicle or a mobile robot which moves

around on the ground. These parameters are required for de-

ciding the action of a vehicle facing a slope or a difference

in the ground level. Especially for a biped robot which dra-

matically changes its pose and shape relative to the plane,

the 3D parameters will be indispensable for inputs to joint

control.

Because typical roads and floors have few feature points,

direct methods [3], where every pixel directly contributes

to a measurement, are more preferable than feature based

methods [8]. There are mainly two approaches based on the

direct methods for estimating the plane parameters.

Since the image deformation between two images with

respect to the plane can be specified by a homography

(eight-parameter projective deformation), we can estimate

the eight parameters of a homography by an Inverse Com-

posigional Image Alignment (ICIA) algorithm [1], and suc-

cessively apply singular value decomposition (SVD) for ob-

taining plane parameters [6]. Although the eight parameters

can be efficiently estimated by the ICIA algorithm, this ap-

proach tends to lack robustness because we have to solve

x

y

z

x'

y'

z'

reference
input

Plane Π:

x' = Rx+t

( R,t : Extrinsic parameters)

q  x =1T
x = (x, y, z)T

point on plane

Figure 1. Stereo configuration and plane parameters

the problem of eight degrees of freedom (d.o.f).

On the other hand, we can formulate a direct method,

similar to [4], for the plane parameters of three d.o.f which

are equivalent to homography parameters under epipolar

constraints. However, this method is more time-consuming

than the method based on the ICIA algorithm for homogra-

phy estimation.

In this paper, we propose a novel formulation of a di-

rect method for efficiently esimtating the plane parameters

from stereo images. In our formulation, we incorporate in-

verse compositional expression into the SSD function be-

tween the reference image and an image warped from the

other by the plane parameters. Our method is about eight

times faster than the conventional method without loss of

precision, and about two times faster than the full eight pa-

rameter estimation using the ICIA algorithm. The validity

of the proposed method is shown by some experiments us-

ing synthetic and real images.

2. Efficient Direct Plane Parameter Estimation

2.1. Homography – Basic Notations

Let x and x′ denote a scene point with respect to the two

different camera views. We write: x′ = Rx + t, where R

and t respectively denote the rotation matrix and the transla-

tion vector between the two camera coordinate frames (see

Fig1).

Let I[u] and I ′[u′] be the pixel values of the refer-

ence image I and the other image I ′, respectively, where

u = (u, v)T and u′ = (u′, v′)T respectively denote the cor-

responding points in I and I ′. For avoiding complexity, let

u and u′ be in the canonical image configuration.

Let Π be a plane with a unit plane normal n and a dis-

tance d in the 3D coordinate frame of the reference camera.
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Thereby, the relationship between u and u′ can be written

as a 3 × 3 homography matrix P as follows [2]:

ũ′ ∼ Pũ, (1)

where P = R + tqT , q ≡ n/d. (2)

Note that q determines a plane equation in the reference

camera coordinate frame as qT x = 1. In this section, we

refer to q as the plane parameter vector to be estimated.

2.2. Conventional Direct Method

Let w(u;p) denote the homography warps derived from

(1), where p = (p1, p2, · · · , p9)
T is a homography param-

eter vector which is a function of q, as indicated by (2). A

conventional direct method for estimating q minimizes the

SSD function as follows:
∑

u∈ROI

{I[u] − I ′ [w (u;p(q̄ + ∆q))]}
2
, (3)

where q̄ and ∆q respectively denote a known current esti-

mate and unknown increments of q. Herein, ROI denotes a

region of interest in I . Equation (3) is essentially equivalent

to an optical flow based representation in [4].
Applying Gauss-Newton optimization to (3) yields

∆q = −H
−1

b, (4)

where H ≡
∑

u∈ROI

{

[

∂I ′

∂w

∂w

∂p

∂p

∂q

]

T
[

∂I ′

∂w

∂w

∂p

∂p

∂q

]

}

, (5)

b ≡
∑

u∈ROI

{

e

[

∂I ′

∂w

∂w

∂p

∂p

∂q

]

T

}

, (6)

e ≡ I[u] − I
′[w(u;p(q̄))]. (7)

The final estimate of q is obtained after iterations in each

of which q̄ is updated by q̄ ← q̄+ ∆q after computing ∆q

by (4). In the conventional case, ∂I ′/∂w and ∂w/∂p at

each pixel should be re-computed in each iteration because

these differentials are evaluated at the current estimate of q̄.

These per-pixel and per-iteration computations for obtain-

ing H impart large computational costs on the conventional

method.

2.3. Our Proposed Method

A homography matrix can be written as

P = P̄[I + ∆P]−1, (8)

where P̄ and ∆P respectively represent a current estimate

of P and a matrix with small elements. Let p̄ and ∆p be

parameter vectors composed respectively by the elements

of P̄ and ∆P. Equation (8) is a fundamental in the ICIA

algorithm [1] for fast homography estimation.

Assume that p̄ and ∆p are functions of q̄ and ∆q, re-

spectively, and ∆p → 0 when ∆q → 0, where q = q̄+∆q

(concrete expressions are presented later). Then we re-write

(3) as

∑

u∈ROI

{I[∆w (u;∆p(∆q))] − I ′ [w (u; p̄(q̄))]}
2
,(9)

where w(u; p̄) and ∆w(u;∆p) denote the homography

warps derived respectively from ũ′ ∼ P̄ũ and ũ′ ∼ [I +
∆P]ũ.

Applying Gauss-Newton optimization to (9) yields

∆q = −H
−1

b, (10)

where

H ≡
∑

u∈ROI

{

[

∂I

∂∆w

∂∆w

∂∆p

∂∆p

∂∆q

]

T
[

∂I

∂∆w

∂∆w

∂∆p

∂∆p

∂∆q

]

}

,

b ≡
∑

u∈ROI

{

e

[

∂I

∂∆w

∂∆w

∂∆p

∂∆p

∂∆q

]

T

}

, (11)

e ≡ I[u] − I
′[w(u;p(q̄))]. (12)

As in the conventional method, q̄ is updated by q̄ ←
q̄ + ∆q in each iteration. However, in this case, ∂I/∂∆w
and ∂∆w/∂∆p are constant in each iteration because these
differentials are evaluated at ∆q = 0 (i.e. ∆p = 0) [1].
∂I/∂∆w denotes the gradients of the reference image. In
addition, ∂∆w/∂∆p can be written as

∂∆w

∂∆p
=

[

u v 1 0 0 0 −u2 −uv −u

0 0 0 u v 1 −uv −v2 −v

]

. (13)

The remainder ∂∆p/∂∆q depends on the expression of

∆p(∆q). We derive it next.

From (2), we can write

P = R + t[q̄ + ∆q]T . (14)

The relationship between ∆p and ∆q is defined by re-

writing (14) into the form of (8).

Sherman-Morrison’s formula [5] gives the inverse of

(14):

P−1 = R′ + t′[q̄′ + ∆q′]T , (15)

where R′ ≡ R−1, t′ ≡ −R−1t, (16)

q̄′ + ∆q′ ≡
R[q̄ + ∆q]

1 + [q̄ + ∆q]T R−1t
.(17)

Re-writing (15) yields

P−1 = [I + t′∆q′T P̄]P̄−1, (18)

where P̄ ≡ R + tq̄T . (19)

The inverse of (18) is written as

P = P̄[I + t′∆q′T P̄]−1. (20)

Therefore, comparing (20) with (8) gives

∆P = t′∆q′T P̄. (21)

Finally, substituting (17) and (16) for (21) obtains

∆P = −
1

1 + q̄T RT t + ∆qT RT t
RT t∆qT . (22)

Eq. (22) is directed to the expression of ∂∆p/∂∆q eval-
uated at ∆q = 0. We derive

∂∆p

∂∆q
=

1

κ

[

α1 0 0 α2 0 0 α3 0 0
0 α1 0 0 α2 0 0 α3 0
0 0 α1 0 0 α2 0 0 α3

]T

,(23)
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where

κ ≡ −(1 + q̄
T
R

T
t), (24)

α1 ≡ t1r1 + t2r4 + t3r7, α2 ≡ t1r2 + t2r5 + t3r8,

α3 ≡ t1r3 + t2r6 + t3r9, (25)

Therein, ti(i = 1, 2, 3) and rj(j = 1, ..., 9) respectively

denote the elements of t and R.
Unfortunately, ∂∆p/∂∆q can not be constant in each it-

eration because κ depends on the current estimate q̄, which
varies from iteration to iteration. However, κ is a simple
scalar independent of pixels. Therefore, the final Gauss-
Newton optimization algorithm can be written as

∆q = −κH
′−1

b
′
, (26)

where

H
′ ≡

∑

u∈ROI

{

[

∂I

∂∆w

∂∆w

∂∆p

[

κ
∂∆p

∂∆q

]]

T

×

[

∂I

∂∆w

∂∆w

∂∆p

[

κ
∂∆p

∂∆q

]]}

, (27)

b
′ ≡

∑

u∈ROI

{

e

[

∂I

∂∆w

∂∆w

∂∆p

[

κ
∂∆p

∂∆q

]]

T

}

, (28)

e ≡ I[u] − I
′[w(u;p(q̄))]. (29)

Compared with (10), we simply replace ∂∆p/∂∆q by

κ∂∆p/∂∆q which is a constant 9 × 3 matrix composed

by the elements of R and t, as described in (23). This

replacement renders the product (1 × 3 column vector) of

∂I/∂∆w, ∂∆w/∂∆p, and κ∂∆p/∂∆q at each pixel con-

stant in each iteration. Therefore, H′ and its inverse can be

pre-computed before the iteration process.

Note that ∂∆w/∂∆p and κ∂∆p/∂∆q are independent

of the scene. The product (2 × 3 matrix) of the two matri-

ces at every pixel can be computed when the cameras are

calibrated. Additionally, the computational costs of κ are

negligible compared to b′, which requires per-pixel com-

putations in each iteration. Therefore, we can consider that

the per-parameter computational costs of this algorithm are

almost equivalent to those of the ICIA algorithm; the pro-

posed method is faster than the ICIA algorithm of homog-

raphy estimation.

3. Experimental Results

We demonstrate the capability of the proposed method

by a comparative study in simulation using three methods

that estimate plane parameters. We also show the exper-

imental results of the proposed method for real environ-

ments.

3.1. Simulation

In our comparative study, the convergence stability and

the computational time of three methods were evaluated.

These methods are the conventional direct method de-

scribed in Section 2.2, a method which combines the ICIA

algorithm for estimating homography [1] with SVD for ob-

tatining the plane parameters as presented in [7], and our

proposed method presented in Section 2.3.

(a) Reference image (b) The other image
Figure 2. Stereo images used in simulation for plane parameter es-

timation: (a) is an example of reference images I0. The reference

images are created by warping the other image (b) using randomly

generated plane vectors. The rectangle denotes a 100 × 100 ROI

whose position is fixed.
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Figure 3. Success rate after five iterations. For each σ, 5000 sets

of plane parameters were generated randomly .

We first set the plane parameters of a reference plane as

q0 = n0/d0, where n0 = (0, 0, 1)T and d0 = 15.24 (in

meters). We refered to the fixed reference plane for setting

a target plane, as the reference plane was rotated and shifted

by a set of three values that were generated randomly by

zero-mean Gaussian noise of a certain standard deviation σ.

Using each set of the three values, we computed the

plane parameters q of the target plane and warped the other

image I ′, as shown in Fig.2(b), by the target plane parame-

ters for creating a reference image, as in Fig.2(a). We also

added Gaussian noise of standard deviation 4 gray levels to

both images. Then we run the algorithms of the three meth-

ods starting from q0.

For each σ, we evaluated the frequency of convergence

over 5000 trials. We judged that an algorithm succeeded

after five iterations, if the angle between q and the estimates

was less than 0.5 degrees. The results are shown in Fig. 3.

Figure 3 shows that the two direct methods for plane

parameter estimation give far higher success rates than the

method for homography. Under the epipolar constraints of

the stereo images, the image deformation is restricted to the

epipolar lines. This restriction is remarkably profitable for

acquiring high stability.

Table 1 shows the computational time of the three meth-

ods. Comparing our method with the others shows that the

five-iteration time of our method is about one-eighth as long

as the conventional method, and about one-twice as long as

the homography estimation method.

3.2. Real Stereo Image Sequence

We mounted two cameras on a car, and sequentially es-

timated the 3D parameters of the ground plane by the pro-
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Method pre-computation per iteration total(5 iterations) total(100 iterations)

Conventional direct — 15.19 75.95 1519

Homography estimation and SVD 11.09 2.613 24.16 272.4

Proposed method 2.526 1.312 9.087 133.5

Table 1. Computational time (ms) in plane parameter estimation: Averaged over 100 trials for a 100 × 100 ROI. All algorithms were

implemented using C-language and run on a Linux PC (Pentium-IV 2.8 GHz).

(a) reference image (b) The other image

Figure 4. A reference image and the other image (640x480 pix-

els) from two calibrated cameras mounted on a car. A 100x100

ROI fixed on the reference image is used for sequentially esti-

mating the plane paramters of the ground.

(a) 850-th frame (b) 1000-th frame

(c) 1150-th frame (d) 1300-th frame
Figure 5. Estimation results for real environments: At each

frame number, the reference image and the image warped from

the other image by the estimated parameters are overlapped.
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Figure 6. Rotation angle with respect to x-axis (parallel to the hor-

izontal axis of the image plane) at each frame number. Zero in-

dicates that the estimated normal has the same angle of the plane

normal obtained at a static situation.

posed method. Fig.4 shows an image pair in the stereo im-

age sequences. In this experiment, we first estimated initial

plane parameters at a static stuation. The initial parame-

ters were used at the first estimation. Then the parameters

estimated at each frame number were sequentially used as

initail parameters at the next.

Fig.5 shows the results of the plane parameter estima-

tion. Each image in this figure shows the overlapped im-

age of the reference image and the image warped from the

other image by the estimated plane parameters. We see that

the plane parameters were satisfactorily estimated at each

frame since the warped image corresponds to the reference

image not only in the ROI but also in a large area on the

road region.

Fig.6 shows the rotation angle between the inital param-

eters estimated at a static stuation and the parameters esti-

mated at each frame, with respect to x-axis (parallel to the

horizontal axis of the image plane). In the actual situation,

the car went up a uphill slope and wend down an easy two-

step slope. We can see the slope shapes from Fig.6.

4. Conclusions

We have proposed an efficient direct method for plane

parameter estimation using stereo images. The proposed

method is far faster than the conventional method, and has

the advantage of more robustness and efficiency over the

ICIA algorithm of homography estimation. We will extend

the proposed method to multi-baseline stereo or planar re-

gion detection in the future research.
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