
Figure 1. The VH reconstruction scheme

A Fast Surface-Based Visual Hull Reconstruction

Sofiane Yous and Masatsugu Kidode
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara 630-0192, Japan
{yous-s, kidode}@is.naist.jp

Abstract

In this paper, we describe a new method for shape re-
construction from a set of silhouette images. We propose a
method for traversing the depth layers of the projected
viewing cones from all viewpoints based on the principle
of the Constructive Solid Geometry (CSG). Taking advan-
tage of the modern Graphics Processing Units (GPU), the
proposed CSG-like method achieves a fast full reconstruc-
tion of VH, rather than rendering a looking of the VH from
a virtual viewpoint, in an interactive frame rate. For each
viewpoint, the viewing edges are computed separately in a
parallel manner. Subsequently, the edges are merged to-
gether to generate the final surface-based Visual Hull
(VH). The method was tested on several datasets including
real data and the results will be presented in this paper.

1 Introduction

Acquiring the 3D shape of a real object is a key issue in
a variety of modeling and 3D multimedia applications.
The straightforward estimation of this shape can be ob-
tained from the silhouette images of the object taken from
different viewpoints. This concept was first introduced by
Baumgart [4] and given the name of Visual Hull (VH)
later by larentini [3]. Based on this concept, the VH is the
maximal approximation of the object that reproduces the
silhouettes of all viewpoints.

Estimating the 3D shape from silhouette images was
motivated by the ease of obtaining silhouette images, es-
pecially in indoor environments with known camera
parameters, and by the ease of implementation. Several
methods have been proposed for VH reconstruction and/or
rendering. Depending on the application, the VH hull is
processed differently. For visualization applications, such
as new viewpoint synthesis or interactive rendering, the
exact reconstruction of the VH is not required. Im-
age-based VH (IBVH) technique [5] suffices to generate
the VH looking from a desired view. Hardware-based ac-
celeration of IBVH was proposed through texture
mapping-based visual cone trimming [9] or direct Con-
structive Solid Geometry (CSG) rendering [6,7,8] to speed
up the processing.

Applications such as object modeling and 3D digital
archiving require a full reconstruction of the object's shape.
Voxel-based VH reconstruction tends to recover a volu-
metric representation of the object. Volume carving
methods split up the 3D space into a 3D grid of voxels.
These voxel are tested for their belonging to all silhouette
cones and labeled as volume voxels if so. This class of
methods, however, suffers from the extensive computation
load and the memory overhead. This approach was first
proposed by Martin and Aggarwal [12]. Later on, octree
representation was proposed by Chien and Aggarwal [13]

to substitute the voxel representation for less memory and
computation demand. For the same purpose, Marching
Intersections (MI) was proposed by Rocchini [2] as a
re-sampling method for surface management and adapted
later by Tarini et al. [1] for volumetric shape reconstruc-
tion.

Surface-based methods also target an exact reconstruc-
tion of the VH, but as a 3D polyhedral surface. The
surface vertices and faces are estimated by intersecting the
generalized cones generated from the occluding contours
of the silhouette images, rather than all the silhouette
points. Baumgart [4] was the first to propose such a strat-
egy, and later Koenderink [15], Cippola [16], and Boyer
[17]. This class of methods produces visual artifact-free
VH and requires much less computations and memory,
comparing to the previous one. However, intersection in
the 3D space is very sensitive to numerical instabilities,
especially between complex objects. In this paper, we
propose a new surface-based VH reconstruction from a set
of silhouette images. The reconstruction is based on a
modification of the direct CSG method [6,10] often used
in image-based rendering. We propose a fast depth layer
traversal method based on which, the viewing edges is-
sued from the occluding contours are computed for each
view in a parallel manner. For each viewpoint, the gener-
alized cones from the other viewpoints are drawn in the
3D space. A multi-pass rendering using an off-screen is
performed to traverse the depth layers of the drawn scene
and extract only the line segments which lie to all cones. A
modification is made to the direct CSG in order to allow a
faster traversal of depth layers and identification and ex-
traction of the viewing edges, rather than just rendering
the depth of the shape from a desired view. Moreover, the
viewing edges in our method are computed only where the
local occluding points occur. This scheme is designed to
run completely in the Graphics Processing Unit (GPU)
and only one readback from the GPU memory is required
at the end of the process to recover the viewing edges. We

477

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN13-12

propose a storage method to allow the accumulation of the
extracted edges at each pass in a shared buffer allocated
on the GPU memory. Next, the viewing edges from all
viewpoints are merged together to construct the final 3D
shape after rectification of the 3D positions of their verti-
ces. (See Figure 1)

2 Computation of the Viewing Edges

Given a set of N silhouette images associated to a set
of N calibrated cameras nC (Nn ..1) having nc as
center, the viewing edges for each view are the line seg-
ments parts of the rays associated with the occluding
contour points of the silhouette and passing through the
VH, and hence, lie to the silhouette images of all other
views. Usually, the viewing edges are extracted by pro-
jecting each ray from each view to the silhouettes of all
other views and find the line segments that intersect all
silhouettes. This method is expensive in terms of process-
ing time, especially when the number of occluding
contour points is large. To speedup the computations, of-
ten one starts by approximating the occluding contours by
polygons to reduce the number of points. However, this
approximation yields a loss of details in the reconstructed
VH.

In the method we propose, no approximation is applied.
Instead of projecting the rays to all cameras, we employ a
CSG-like method. For each viewpoint, the viewing cones
from the other cameras are projected to the 3D space.
Next, we traverse the depth layers of the drown scene and
keep only those lying to all viewing cones. The intersec-
tions of these layers with the ray issued from the
occluding contour points of the local camera define verti-
ces in the VH surface. A viewing edge is a line segment
which is part of a ray and defined by two vertices inter-
secting two adjacent opposite layers. The first point with
respect to the camera center belongs to a front facing,
while the other point belongs to a back facing layer. A
front fragment is a region of a cone projecting to a pixel in

the local image plane, where the dot product between its
outward normal vector and vector joining the camera cen-
ter and the fragment is negative. Otherwise, the fragment
in question is a back fragment.

The CSG-based rendering was proposed by Goldfeather
[18] and used later by Guha [6] and Li et al.[10] for
GPU-based view-dependent VH rendering. CSG is based
on the representation of a complex 3D object as a normal-
ized tree of operations (,\,) on primitive shapes. Let
us consider the complex object expressed by the following
expression:

4321 \)(OOOO (1)

This object can be represented by the following tree:

21

43241

pp

OOOOO (2)

1p and 2p are two products of the tree that can be
processed in a parallel way and merged later on. If we
refer by),(pdf and),(pdb to the number of, re-
spectively, front and back faces with smaller depth than a
point p and with respect to a desired viewpoint d, then
p belongs to the product if:

||),(),(Ppdbpdf (3)

where || P is the number of products in the tree.

2.1 Direct CSG-Based Rendering

A VH reconstructed from a set of viewpoints can be
expressed by the intersections of all unions of cones, each
of which is generated by the outer contours of one silhou-
ette, and the complements of unions of cones, each of
which is issued from the inner contours (holes) of one
silhouette. The direct CSG-based rendering [6,10] can be

 (a) Direct CSG (b) Our traversal method

Figure 2: Direct CSG Vs. our traversal method in 2D: The traversed depth layers are drawn in green dashed lines. The
points shown in red are the tested points. The Blue points are the saved points and those bounded by a red circle are

tested and saved. The number of tested points is 5 in the direct-CSG method and 3 in ours.

478

Figure 3: The silhouette generalized cone

Figure 5. Viewing edge storage scheme.

summarized in the following steps:
Repeat for all front depth layers:
1. Project the next (first for the first iteration) depth

layer of front faces.
2. Count the front faces separating the traversed depth

layer and the desired view position.
3. Count the back faces separating the traversed depth

layer and the desired view position.
4. Save the depths of the points that verify (2).

2.2 Our CSG-Based Depth Traversal Method

We can see from figure 2(a) that a front face who is
candidate to be a valid intersection is always immediately
preceding a back face with respect to the camera center of
the target view. This means that only the last of a succes-
sion of front faces can be a candidate, all remaining faces
can be skipped. This can be done by rendering a back
layer and then the farthest front layer with shorter depth
than the rendered back layer. Also, only the first of a list
of back faces is traversed, all the others can be skipped by
rendering the first front face farther than the rendered back
layer and then rendering the first back layer with longer
depth than the rendered front layer. The new algorithm is
as follows:
1. If this is the fist iteration, render the first depth layer

of back faces. Otherwise, render the next depth layer
of back faces having depth longer that the rendered
front layer (skip all front faces).

2. Count the back faces separating the traversed depth
layer and the desired view position.

3. Count the front faces separating the traversed depth
layer and the desired view position and keep the
depth of the last depth with respect to the camera.

4. Save the depths of the points that verifies (2).
5. Render the first front layer having a depth greater

than the current back layer (skip all back layers sepa-
rating the two layers).

6. Finish the process if no layer is returned, otherwise go
to 1.

The advantage of this new algorithm is the reduction of
the number of rendering passes and hence, probability of
missing some layers.

2.3 Application to Viewing edges computing

In the method we propose, no approximation is applied.
An occluding nO with M points (Mm ..1) is
drawn as a generalized cone of M faces. Each face

m

nF
is bound by the rays

m

nr and
Mm

nr
)%1(

, see Figure 4. We
consider the pinhole camera model and we refer by nA
to the camera matrix of the camera nC , by nc to its
center, and by nf to its focal length. If

m

no is a point of

nO with the coordinates),(ii xx in the image plane,
then its local 3D coordinates are),,(nii fxx .

Each point
m

nv of the ray
m

nr associated to the con-
tour point

m

no has the following coordinates in the world
coordinate system:

m

nnn

m

n oAcv 1
 (4)

where n is a real constant.
We set n in (4) to an appropriate value that deter-

mines the depth of each cone face to be drawn. We take
into account the distance nD between the camera and the
farthest point of the 3D covered area as follows:

n

n
n

f

D
 (5)

This setting ensures that each ray intersects all viewing
cones whatever the position of the object in the covered
scene. After setting n , it becomes possible to find for
each ray

m

nr , the farthest point
m

nv from the camera
center nc . A cone face

m

nF associated to a ray
m

nr is
defined by the ordered vertices (

1,, m

n

m

nn vvc). In order to
be able to identify the viewing edges sharing the same
vertices, we label each ray with a unique id (cone face), as
shown in Figure 4. This id is passed to the cone face dur-
ing the drawing step as color information. We employ the
previously described algorithm with the possibility of
saving all valid edges instead of the only first intersection.
The straightforward solution for the storage is to read back
the data after each iteration. However, the readback is the
main bottleneck of the GPU. The depth peeling [19] was
just proposed to overcome this limitation by offering the
possibility to update at each iteration the depth for only
those intersections which haven’t been set yet. However
for us, not only the first intersections are targeted, but
rather all intersections.

2.4 Viewing edges storage

As explained, we are interested in the occluding con-
tour points only. These points are few as compared to the
image points. The idea we propose is to save the edges
passing the test to a storage buffer allocated as a RGBA
texture in the GPU memory. This buffer is read-back once
all edges extracted. We need for that to add one more ren-
dering pass. This pass consists in drawing a full screen
quad in a projective geometry. Five textures are attached
as inputs: two textures for each vertex containing the 3D
position and the id of the corresponding intersecting ray,
and one texture loaded once at the beginning and serving
as a lookup table for each point to get the coordinates of
the texture point to store. Let us refer by 3DMap1 and
IdMap1 the 3D and color maps of the first vertex, and by
3DMap2 and IdMap2 to those of the second vertex of the

479

Figure 6. The extracted viewing edges.

Figure 7. Edge surface.

edge. The color map contains the id of the intersecting
edges. Also we refer by lut to the lookup table texture, by
width and height to the texture and image size, by M to
the number of occluding contour points, and by it to the
number of iterations. lut is initialized once and load
loaded to the GPU memory. It contains a list of subse-
quent occurrences of the list of the occluding points, each
of which is duplicated four times, as shown in Figure 5.
The lookup table initialization is illustrated by Algorithm
1.

The kernel (fragment shader) invoked at point level, to
store the edge vertices, reads the coordinates from lut and
uses them to locate the information to store from one of
the four vertex textures. This is done only if the invoking
point is located within the region concerned by the current
iteration. If the coordinates of this point in the storage
buffer are),(yx , then the storage is as in Algorithm 2:
The maximum number of iteration that can be processed
within the storage capacity of one buffer is given by:

M

heightwidth
MaxIt

4
 (6)

2.5 Implementation

We implemented the described edge extraction scheme
as a multi-pass rendering on GPU. We made use of
OPENGL as an API and C-like shading language (CG) of
NVIDIA to write the shaders. We made use of a Frame
Buffer Object as an off-screen rendering target instead of
the screen. To this FBO, we bind a depth buffer, a stencil
buffer, and a shadow buffer. The depth and shadow buffer

serve to the two-sided buffer test [6], while the stencil
buffer is for counting the layers. We bind also a storage
buffer and a lookup texture to the FBO. At each rendering
step, appropriate textures are attached as input(s) and
output(s). In addition, one fragment and/or one vertex
shaders are loaded to the programmable vertex and frag-
ment processors in order to achieve one step of the
extraction algorithm. Figure 6 shows the extracted edges
using four silhouette images of a bunny taken from 4
viewpoints.

3 VH Surface Construction

After been extracted from all views, the viewing edges
are merged together to construct the VH surface as shown
in Figure 7. A vertex, being the intersection of two or
more edges issued for different cameras, can be computed
with slightly different 3D position in each camera. This
fact makes the extracted edges disconnected from each
other. Thus, we need to recover a unique 3D position for
each vertex. We compute a unique 3D position as the
mean of its coordinates estimated by all views. Even after
connecting the edges, still some edges remains discon-
nected. This fact is due to the resolution difference
between the cameras. We join these edges to the closest
neighboring vertices (issued from a neighboring point of
the same contour). The VH face generation can be proc-
essed for each camera separately in a step prior to the
rectification of the 3D positions of the vertices. The faces
are generated by connecting the appropriate edges gener-
ated by neighboring contour points. We need to consider
the predefined order of the contours in generating the
faces. The reconstruction results will be presented in the

480

Table 1: Processing time evaluation (in ms).

 Bunny Shark Maiko

 Points time Points time Points time

Camera 1 887 110 720 109 1109 156

Camera 2 1062 140 680 109 1306 172

Camera 3 960 125 1256 140 1209 172

Camera 4 971 125 887 125 1075 156

Camera 5 1052 140 703 109 1316 170

Camera 6 1066 140 1069 125 1565 156

Camera 7 1024 141 1159 140 1185 156

Camera 8 1060 140 966 125 1413 172

Figure 8: VH reconstruction result.

Table 1: Comparison with the reconstruction using
down-scaled images.

640 480 320 240

 Points Time(ms) Points Time(ms)

Camera 1 1334 172 666 46

Camera 2 1028 140 508 31

Camera 3 973 141 482 31

Camera 4 1242 156 611 31

Camera 5 1302 172 648 47

Camera 6 1121 156 559 32

Camera 7 1093 141 543 31

Camera 8 1061 141 531 32

next section, in addition of the evaluation of the overall
VH reconstruction.

4 Experimental results

The presented scheme was implemented on a P4 PC
with 1[GB] memory and equipped with a NVIDIA Ge-
Force 9700 graphics card. We tested the reconstruction
scheme on 2 synthetic datasets. We used 2 shapes pro-
vided by Princeton Shape Benchmark [20] to generate the
silhouettes from 8 viewpoints. We also tested the recon-
struction scheme on real data provided by Matsuyama
Laboratory of Kyoto University in the form of 8 silhouette
images of a Kimono Lady (Maiko) and the related camera
parameters. Figure 8 shows four virtual views of the re-
constructed VH of the three examples.

Table 1, summarizes the processing time for each cam-
era and for each dataset. This can allow us to get an idea
about the processing time when the scheme is distribu-
tively implemented on multiple PCs, each of which is
connected to one camera. In this case, the processing time
is the largest time among all cameras, added to the time
needed for vertex unification, which is 31[ms]. The proc-
essing time varies from one camera to another due to the
complexity of the scene that varies with respect to each
viewpoint, yielding different number of depth layers. Also
it is due to the area occupied by each silhouette. In fact,
we used scissoring technique to speedup the rendering
time. Thus, the rendering is allowed only in the region
defined by the bounding rectangle of the silhouette.

As to evaluate the processing time of the proposed al-
gorithm, we considered the algorithm proposed by
Matusik [21] which is supposed to be the first to compute
the VH polyhedral representation in an interactive frame
rate. Implemented on a 1[GHz] Pentium III machine with
1[GB] of RAM, this method reconstruct the VH in 2[sec]
for 8 viewpoints with 641 contour points in each view.
From Table 1 and if we consider an implementation on
one PC, the processing time varies between 1012 [ms] for

the shark dataset and 1343[ms] for Maiko, with much
more contour points for each view. In order to get similar
contour points, we scaled down the silhouette images.
Table 2 summarizes the processing time for the recon-
structed VH using 8 640 480 images and using the same
images but scaled down to 320 240. To total processing
time passes from 1250[ms] in the original scale to [312
ms] in the lower scale. This means that we could speedup
the process 4 times by down scaling the image to the half
size (in each direction).

The graph of Figure 9 shows the number of traversed
depth layers of the drawn cones from different number of
viewpoints using both traversing methods (Direct CSG
and ours). We can notice that our method requires less
iterations than the native CSG method do to visit all can-
didate depth layers. Also, the difference increases for more
cameras. In addition, we plot the number of viewing edges
extracted after each iteration on the graph of Figure 10. 12
iterations is the number of iteration required by all cam-
eras to recover all viewing edges. In our tests, we set the
number of iterations to 15 for all models.

5 Conclusion

In this chapter, I presented a new method for shape
from occluding contours. I proposed a CSG-like method
for a fast depth layer traversing and viewing edge com-
puting, rather than just rendering the depth of the shape
from a desired view. The viewing edges are extracted for
each camera separately without camera-camera projection.
This fact allows the system to be implemented in a dis-
tributed system where each camera is connected to one PC
and operates independently of the rest. This design will
provide a faster processing. The proposed reconstruction
scheme doesn't need any approximation of the silhouette
and, hence, preserves the details of the shape.

References

[1] I.M. Researcher: “Read My Excellent Paper,” Some Great

Journal, vol.xx, no.xx, pp.xx-xx, 200X.

[2] MVA Conference:

http://www.cvl.iis.u-tokyo.ac.jp/mva/

[1] M. Tarini, M. Callieri, C. Montani, C. Rocchini, “Marching

Intersections: An Efficient Approach to Shape from

481

Figure 9: Direct CSG vs. Our depth layers traversal

method: Number of depth traversed.

Figure 10: Number of extracted edges within iterations.

Silhouette”, In Proceedings of the Vision, Modeling, and

Visualization Conference, pp. 255-262, 2002.

[2] C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, R.

Scopigno, “Marching Intersections: an Efficient Resampling

Algorithm for Surface Management”, In Proceedings of the

International Conference on Shape Modeling and Applica-

tions, pp. 296-305, 2001.

[3] A. Laurentini, “The visual hull concept for silhouettebased

image understanding”, IEEE Transactions on Pattern Analysis

and Machine intelligence, Vol. 16(2), pp.150-162, 1994.

[4] B.G. Baumgart: “Geometric Modeling for Computer Vision”,

PhD thesis, Stanford University, 1974.

[5] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L.

McMillan: “Image-based visual hulls,” In Proceedings of the

ACM Computer Graphics (SIGGRAPH), pp. 369-374, 2000.

[6] S. Guha, S. Krishnan, K. Munagala, and S. Venkat: “Applica-

tion of the two-sided depth test to CSG rendering,” In

Proceedings of Symposium on Interactive 3D Rendering, pp.

177-180, 2003.

[7] N. Stewart, G. Leach, and S. John: “An improved Zbuffer

CSG rendering algorithm,” In Proceedings of the SIG-

GRAPH/Eurographics workshop on graphics hardware, pp.

25-30, 1998.

[8] T. F. Wiegand: “Interactive rendering of CSG models,”

Computer Graphics Forum, Vol. 15(4), pp. 249-261, 1996.

[9] M. Li, M. Magnor, and H.P. Seidel: “Hardware-accelerated

visual hull reconstruction and rendering,” In Proceedings of

Graphics Interface, pp. 65-71, 2003.

[10] M. Li, M. Magnor, and H.P. Seidel: “A Hybrid Hard-

ware-Accelerated Algorithm for High Quality Rendering of

Visual Hulls,” In Proceedings of Graphics Interface, pp. 41-48,

2004.

[11] K.M. Cheung, T. Kanade, J.Y. Bouguet, and M. Holler: “A

real time system for robust 3d voxel reconstruction of human

motions,” In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Vol. 2, pp.

714-720, 2000.

[12] W.N. Martin and J.K. Aggarwal: “Volumetric description of

objects from multiple views,” IEEE Transactions on Pattern

Analysis and Machine intelligence, Vol. 5(2), pp. 150-158,

1983.

[13] C.H. Chien and J.K. Aggarwal: “Volume/surface octrees for

the representation of three-dimensional objects,” Computer

Vision, Graphics and Image Processing, Vol. 36(1), pp.

100-113, 1986.

[14] R. Szeliski: “Rapid Octree Construction from Image Se-

quences,” Computer Vision, Graphics and Image Processing,

Vol. 58 (1), pp 23-32, 1993.

[15] J.J. Koenderink: “What Does the Occluding Contour Tell us

About Solid Shape?,” Perception, Vol.13, pp. 321-330, 1984.

[16] R. Cipolla and A. Blake: “Surface Shape from the Deforma-

tion of Apparent Contours,” International Journalof Computer

Vision, Vol. 9, pp. 83-112, 1992.

[17] E. Boyer and M.-O. Berger: “3D surface reconstruction

using occluding contours,” International Journal of Computer

Vision, Vol. 22(3), pp. 219-233, 1997.

[18] J. Goldfeather, J. P. M. Hultquist, and H. Fuchs: “Fast con-

structive-solid geometry display in the pixel powers graphics

system,” In Proceedings of the ACM Computer Graphics

(SIGGRAPH), pp. 107-116, 1986.

[19] C. Everit: “Interactive order-independent transparency,”

Technical report, 2002, Nvidia Corporation,

http://developer.nvidia.com.

[20] Princeton Shape Retrieval and Analysis Group, ’Princeton

Shape Benchmark’,

http://shape.cs.princeton.edu/benchmark/

[21] W. Matusik, C. Buehler, L. McMillan, and S. Gortler: “An

Efficient Visual Hull Computation Algorithm,” Technical

Memo 623, LCS, MIT, 200

482

