
Figure 1.  The VH reconstruction scheme 
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Abstract

In this paper, we describe a new method for shape re-
construction from a set of silhouette images. We propose a 
method for traversing the depth layers of the projected 
viewing cones from all viewpoints based on the principle 
of the Constructive Solid Geometry (CSG). Taking advan-
tage of the modern Graphics Processing Units (GPU), the 
proposed CSG-like method achieves a fast full reconstruc-
tion of VH, rather than rendering a looking of the VH from 
a virtual viewpoint, in an interactive frame rate. For each 
viewpoint, the viewing edges are computed separately in a 
parallel manner. Subsequently, the edges are merged to-
gether to generate the final surface-based Visual Hull 
(VH). The method was tested on several datasets including 
real data and the results will be presented in this paper. 

1 Introduction 

Acquiring the 3D shape of a real object is a key issue in 
a variety of modeling and 3D multimedia applications. 
The straightforward estimation of this shape can be ob-
tained from the silhouette images of the object taken from 
different viewpoints. This concept was first introduced by 
Baumgart [4] and given the name of Visual Hull (VH) 
later by larentini [3]. Based on this concept, the VH is the 
maximal approximation of the object that reproduces the 
silhouettes of all viewpoints. 

Estimating the 3D shape from silhouette images was 
motivated by the ease of obtaining silhouette images, es-
pecially in indoor environments with known camera 
parameters, and by the ease of implementation. Several 
methods have been proposed for VH reconstruction and/or 
rendering. Depending on the application, the VH hull is 
processed differently. For visualization applications, such 
as new viewpoint synthesis or interactive rendering, the 
exact reconstruction of the VH is not required. Im-
age-based VH (IBVH) technique [5] suffices to generate 
the VH looking from a desired view. Hardware-based ac-
celeration of IBVH was proposed through texture 
mapping-based visual cone trimming [9] or direct Con-
structive Solid Geometry (CSG) rendering [6,7,8] to speed 
up the processing. 

Applications such as object modeling and 3D digital 
archiving require a full reconstruction of the object's shape. 
Voxel-based VH reconstruction tends to recover a volu-
metric representation of the object. Volume carving 
methods split up the 3D space into a 3D grid of voxels. 
These voxel are tested for their belonging to all silhouette 
cones and labeled as volume voxels if so. This class of 
methods, however, suffers from the extensive computation 
load and the memory overhead. This approach was first 
proposed by Martin and Aggarwal [12]. Later on, octree 
representation was proposed by Chien and Aggarwal [13] 

to substitute the voxel representation for less memory and 
computation demand. For the same purpose, Marching 
Intersections (MI) was proposed by Rocchini [2] as a 
re-sampling method for surface management and adapted 
later by Tarini et al. [1] for volumetric shape reconstruc-
tion.  

Surface-based methods also target an exact reconstruc-
tion of the VH, but as a 3D polyhedral surface. The 
surface vertices and faces are estimated by intersecting the 
generalized cones generated from the occluding contours 
of the silhouette images, rather than all the silhouette 
points. Baumgart [4] was the first to propose such a strat-
egy, and later Koenderink [15], Cippola [16], and Boyer 
[17]. This class of methods produces visual artifact-free 
VH and requires much less computations and memory, 
comparing to the previous one. However, intersection in 
the 3D space is very sensitive to numerical instabilities, 
especially between complex objects. In this paper, we 
propose a new surface-based VH reconstruction from a set 
of silhouette images. The reconstruction is based on a 
modification of the direct CSG method [6,10] often used 
in image-based rendering. We propose a fast depth layer 
traversal method based on which, the viewing edges is-
sued from the occluding contours are computed for each 
view in a parallel manner. For each viewpoint, the gener-
alized cones from the other viewpoints are drawn in the 
3D space. A multi-pass rendering using an off-screen is 
performed to traverse the depth layers of the drawn scene 
and extract only the line segments which lie to all cones. A 
modification is made to the direct CSG in order to allow a 
faster traversal of depth layers and identification and ex-
traction of the viewing edges, rather than just rendering 
the depth of the shape from a desired view. Moreover, the 
viewing edges in our method are computed only where the 
local occluding points occur. This scheme is designed to 
run completely in the Graphics Processing Unit (GPU) 
and only one readback from the GPU memory is required 
at the end of the process to recover the viewing edges. We 
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propose a storage method to allow the accumulation of the 
extracted edges at each pass in a shared buffer allocated 
on the GPU memory. Next, the viewing edges from all 
viewpoints are merged together to construct the final 3D 
shape after rectification of the 3D positions of their verti-
ces. (See Figure 1) 

2 Computation of the Viewing Edges 

Given a set of N  silhouette images associated to a set 
of N calibrated cameras nC ( Nn ..1 ) having nc as 
center, the viewing edges for each view are the line seg-
ments parts of the rays associated with the occluding 
contour points of the silhouette and passing through the 
VH, and hence, lie to the silhouette images of all other 
views. Usually, the viewing edges are extracted by pro-
jecting each ray from each view to the silhouettes of all 
other views and find the line segments that intersect all 
silhouettes. This method is expensive in terms of process-
ing time, especially when the number of occluding 
contour points is large. To speedup the computations, of-
ten one starts by approximating the occluding contours by 
polygons to reduce the number of points. However, this 
approximation yields a loss of details in the reconstructed 
VH.  

In the method we propose, no approximation is applied. 
Instead of projecting the rays to all cameras, we employ a 
CSG-like method. For each viewpoint, the viewing cones 
from the other cameras are projected to the 3D space. 
Next, we traverse the depth layers of the drown scene and 
keep only those lying to all viewing cones. The intersec-
tions of these layers with the ray issued from the 
occluding contour points of the local camera define verti-
ces in the VH surface. A viewing edge is a line segment 
which is part of a ray and defined by two vertices inter-
secting two adjacent opposite layers. The first point with 
respect to the camera center belongs to a front facing, 
while the other point belongs to a back facing layer. A 
front fragment is a region of a cone projecting to a pixel in 

the local image plane, where the dot product between its 
outward normal vector and vector joining the camera cen-
ter and the fragment is negative. Otherwise, the fragment 
in question is a back fragment.  

The CSG-based rendering was proposed by Goldfeather 
[18] and used later by Guha [6] and Li et al.[10] for 
GPU-based view-dependent VH rendering. CSG is based 
on the representation of a complex 3D object as a normal-
ized tree of operations ( ,\, ) on primitive shapes. Let 
us consider the complex object expressed by the following 
expression: 

4321 \)( OOOO   (1) 

This object can be represented by the following tree: 
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1p and 2p are two products of the tree that can be 
processed in a parallel way and merged later on. If we 
refer by ),( pdf and ),( pdb  to the number of, re-
spectively, front and back faces with smaller depth than a 
point p  and with respect to a desired viewpoint d, then
p  belongs to the product if: 

||),(),( Ppdbpdf    (3) 

where || P  is the number of products in the tree. 

2.1 Direct CSG-Based Rendering 

A VH reconstructed from a set of viewpoints can be 
expressed by the intersections of all unions of cones, each 
of which is generated by the outer contours of one silhou-
ette, and the complements of unions of cones, each of 
which is issued from the inner contours (holes) of one 
silhouette. The direct CSG-based rendering [6,10] can be 

  (a) Direct CSG    (b) Our traversal method 

Figure 2: Direct CSG Vs. our traversal method in 2D: The traversed depth layers are drawn in green dashed lines. The 
points shown in red are the tested points. The Blue points are the saved points and those bounded by a red circle are 

tested and saved. The number of tested points is 5 in the direct-CSG method and 3 in ours. 
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Figure 3: The silhouette generalized cone 

Figure 5. Viewing edge storage scheme. 

summarized in the following steps: 
Repeat for all front depth layers:  
1. Project the next (first for the first iteration) depth 

layer of front faces.  
2. Count the front faces separating the traversed depth 

layer and the desired view position.  
3. Count the back faces separating the traversed depth 

layer and the desired view position.  
4. Save the depths of the points that verify (2). 

2.2 Our CSG-Based Depth Traversal Method 

We can see from figure 2(a) that a front face who is 
candidate to be a valid intersection is always immediately 
preceding a back face with respect to the camera center of 
the target view. This means that only the last of a succes-
sion of front faces can be a candidate, all remaining faces 
can be skipped. This can be done by rendering a back 
layer and then the farthest front layer with shorter depth 
than the rendered back layer. Also, only the first of a list 
of back faces is traversed, all the others can be skipped by 
rendering the first front face farther than the rendered back 
layer and then rendering the first back layer with longer 
depth than the rendered front layer. The new algorithm is 
as follows:  
1. If this is the fist iteration, render the first depth layer 

of back faces. Otherwise, render the next depth layer 
of back faces having depth longer that the rendered 
front layer (skip all front faces).  

2. Count the back faces separating the traversed depth 
layer and the desired view position.  

3. Count the front faces separating the traversed depth 
layer and the desired view position and keep the 
depth of the last depth with respect to the camera.  

4. Save the depths of the points that verifies (2). 
5. Render the first front layer having a depth greater 

than the current back layer (skip all back layers sepa-
rating the two layers). 

6. Finish the process if no layer is returned, otherwise go 
to 1. 

The advantage of this new algorithm is the reduction of 
the number of rendering passes and hence, probability of 
missing some layers. 

2.3 Application to Viewing edges computing 

In the method we propose, no approximation is applied. 
An occluding nO  with M  points ( Mm ..1 ) is 
drawn as a generalized cone of M  faces. Each face 

m

nF
is bound by the rays 

m

nr  and 
Mm

nr
)%1(

, see Figure 4. We 
consider the pinhole camera model and we refer by nA
to the camera matrix of the camera nC , by nc  to its 
center, and by nf  to its focal length. If 

m

no  is a point of 

nO with the coordinates ),( ii xx  in the image plane, 
then its local 3D coordinates are ),,( nii fxx .

Each point 
m

nv  of the ray 
m

nr  associated to the con-
tour point 

m

no  has the following coordinates in the world 
coordinate system:  

m

nnn

m

n oAcv 1
      (4) 

where n  is a real constant. 
We set n  in (4) to an appropriate value that deter-

mines the depth of each cone face to be drawn. We take 
into account the distance nD  between the camera and the 
farthest point of the 3D covered area as follows: 

n

n
n

f

D
    (5) 

This setting ensures that each ray intersects all viewing 
cones whatever the position of the object in the covered 
scene. After setting n , it becomes possible to find for 
each ray 

m

nr , the farthest point 
m

nv  from the camera 
center nc . A cone face 

m

nF  associated to a ray 
m

nr  is 
defined by the ordered vertices (

1,, m

n

m

nn vvc ). In order to 
be able to identify the viewing edges sharing the same 
vertices, we label each ray with a unique id (cone face), as 
shown in Figure 4. This id is passed to the cone face dur-
ing the drawing step as color information. We employ the 
previously described algorithm with the possibility of 
saving all valid edges instead of the only first intersection. 
The straightforward solution for the storage is to read back 
the data after each iteration. However, the readback is the 
main bottleneck of the GPU. The depth peeling [19] was 
just proposed to overcome this limitation by offering the 
possibility to update at each iteration the depth for only 
those intersections which haven’t been set yet. However 
for us, not only the first intersections are targeted, but 
rather all intersections. 

2.4 Viewing edges storage 

As explained, we are interested in the occluding con-
tour points only. These points are few as compared to the 
image points. The idea we propose is to save the edges 
passing the test to a storage buffer allocated as a RGBA 
texture in the GPU memory. This buffer is read-back once 
all edges extracted. We need for that to add one more ren-
dering pass. This pass consists in drawing a full screen 
quad in a projective geometry. Five textures are attached 
as inputs: two textures for each vertex containing the 3D 
position and the id of the corresponding intersecting ray, 
and one texture loaded once at the beginning and serving 
as a lookup table for each point to get the coordinates of 
the texture point to store. Let us refer by 3DMap1 and 
IdMap1 the 3D and color maps of the first vertex, and by 
3DMap2 and IdMap2 to those of the second vertex of the 
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Figure 6. The extracted viewing edges. 

Figure 7. Edge surface. 

edge. The color map contains the id of the intersecting 
edges. Also we refer by lut to the lookup table texture, by 
width and height to the texture and image size, by M  to 
the number of occluding contour points, and by it to the 
number of iterations. lut is initialized once and load 
loaded to the GPU memory. It contains a list of subse-
quent occurrences of the list of the occluding points, each 
of which is duplicated four times, as shown in Figure 5. 
The lookup table initialization is illustrated by Algorithm 
1.  

The kernel (fragment shader) invoked at point level, to 
store the edge vertices, reads the coordinates from lut and 
uses them to locate the information to store from one of 
the four vertex textures. This is done only if the invoking 
point is located within the region concerned by the current 
iteration. If the coordinates of this point in the storage 
buffer are ),( yx , then the storage is as in Algorithm 2: 
The maximum number of iteration that can be processed 
within the storage capacity of one buffer is given by:  

M

heightwidth
MaxIt

4
  (6) 

2.5 Implementation 

We implemented the described edge extraction scheme 
as a multi-pass rendering on GPU. We made use of 
OPENGL as an API and C-like shading language (CG) of 
NVIDIA to write the shaders. We made use of a Frame 
Buffer Object as an off-screen rendering target instead of 
the screen. To this FBO, we bind a depth buffer, a stencil 
buffer, and a shadow buffer. The depth and shadow buffer 

serve to the two-sided buffer test [6], while the stencil 
buffer is for counting the layers. We bind also a storage 
buffer and a lookup texture to the FBO. At each rendering 
step, appropriate textures are attached as input(s) and 
output(s). In addition, one fragment and/or one vertex 
shaders are loaded to the programmable vertex and frag-
ment processors in order to achieve one step of the 
extraction algorithm. Figure 6 shows the extracted edges 
using four silhouette images of a bunny taken from 4 
viewpoints.  

3 VH Surface Construction 

After been extracted from all views, the viewing edges 
are merged together to construct the VH surface as shown 
in Figure 7. A vertex, being the intersection of two or 
more edges issued for different cameras, can be computed 
with slightly different 3D position in each camera. This 
fact makes the extracted edges disconnected from each 
other. Thus, we need to recover a unique 3D position for 
each vertex. We compute a unique 3D position as the 
mean of its coordinates estimated by all views. Even after 
connecting the edges, still some edges remains discon-
nected. This fact is due to the resolution difference 
between the cameras. We join these edges to the closest 
neighboring vertices (issued from a neighboring point of 
the same contour). The VH face generation can be proc-
essed for each camera separately in a step prior to the 
rectification of the 3D positions of the vertices. The faces 
are generated by connecting the appropriate edges gener-
ated by neighboring contour points. We need to consider 
the predefined order of the contours in generating the 
faces. The reconstruction results will be presented in the 

480



Table 1: Processing time evaluation (in ms).

 Bunny Shark Maiko 

 Points time Points time Points time

Camera 1 887 110 720 109 1109 156

Camera 2 1062 140 680 109 1306 172

Camera 3 960 125 1256 140 1209 172

Camera 4 971 125 887 125 1075 156

Camera 5 1052 140 703 109 1316 170

Camera 6 1066 140 1069 125 1565 156

Camera 7 1024 141 1159 140 1185 156

Camera 8 1060 140 966 125 1413 172

Figure 8: VH reconstruction result. 

Table 1: Comparison with the reconstruction using 
down-scaled images. 

640 480 320 240

 Points Time(ms) Points Time(ms)

Camera 1 1334 172 666 46 

Camera 2 1028 140 508 31 

Camera 3 973 141 482 31 

Camera 4 1242 156 611 31 

Camera 5 1302 172 648 47 

Camera 6 1121 156 559 32 

Camera 7 1093 141 543 31 

Camera 8 1061 141 531 32 

next section, in addition of the evaluation of the overall 
VH reconstruction. 

4 Experimental results 

The presented scheme was implemented on a P4 PC 
with 1[GB] memory and equipped with a NVIDIA Ge-
Force 9700 graphics card. We tested the reconstruction 
scheme on 2 synthetic datasets. We used 2 shapes pro-
vided by Princeton Shape Benchmark [20] to generate the 
silhouettes from 8 viewpoints. We also tested the recon-
struction scheme on real data provided by Matsuyama 
Laboratory of Kyoto University in the form of 8 silhouette 
images of a Kimono Lady (Maiko) and the related camera 
parameters. Figure 8 shows four virtual views of the re-
constructed VH of the three examples.  

Table 1, summarizes the processing time for each cam-
era and for each dataset. This can allow us to get an idea 
about the processing time when the scheme is distribu-
tively implemented on multiple PCs, each of which is 
connected to one camera. In this case, the processing time 
is the largest time among all cameras, added to the time 
needed for vertex unification, which is 31[ms]. The proc-
essing time varies from one camera to another due to the 
complexity of the scene that varies with respect to each 
viewpoint, yielding different number of depth layers. Also 
it is due to the area occupied by each silhouette. In fact, 
we used scissoring technique to speedup the rendering 
time. Thus, the rendering is allowed only in the region 
defined by the bounding rectangle of the silhouette.  

As to evaluate the processing time of the proposed al-
gorithm, we considered the algorithm proposed by 
Matusik [21] which is supposed to be the first to compute 
the VH polyhedral representation in an interactive frame 
rate. Implemented on a 1[GHz] Pentium III machine with 
1[GB] of RAM, this method reconstruct the VH in 2[sec] 
for 8 viewpoints with 641 contour points in each view. 
From Table 1 and if we consider an implementation on 
one PC, the processing time varies between 1012 [ms] for 

the shark dataset and 1343[ms] for Maiko, with much 
more contour points for each view. In order to get similar 
contour points, we scaled down the silhouette images. 
Table 2 summarizes the processing time for the recon-
structed VH using 8 640 480 images and using the same 
images but scaled down to 320 240. To total processing 
time passes from 1250[ms] in the original scale to [312 
ms] in the lower scale. This means that we could speedup 
the process 4 times by down scaling the image to the half 
size (in each direction).  

The graph of Figure 9 shows the number of traversed 
depth layers of the drawn cones from different number of 
viewpoints using both traversing methods (Direct CSG 
and ours). We can notice that our method requires less 
iterations than the native CSG method do to visit all can-
didate depth layers. Also, the difference increases for more 
cameras. In addition, we plot the number of viewing edges 
extracted after each iteration on the graph of Figure 10. 12 
iterations is the number of iteration required by all cam-
eras to recover all viewing edges. In our tests, we set the 
number of iterations to 15 for all models.  

5 Conclusion

In this chapter, I presented a new method for shape 
from occluding contours. I proposed a CSG-like method 
for a fast depth layer traversing and viewing edge com-
puting, rather than just rendering the depth of the shape 
from a desired view. The viewing edges are extracted for 
each camera separately without camera-camera projection. 
This fact allows the system to be implemented in a dis-
tributed system where each camera is connected to one PC 
and operates independently of the rest. This design will 
provide a faster processing. The proposed reconstruction 
scheme doesn't need any approximation of the silhouette 
and, hence, preserves the details of the shape.  
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