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Abstract

In this paper we present an evaluation method for
stereo matching systems and sensors especially for real
world indoor applications. We estimate ground truth
reference images by illuminating scenes with structured
light. The paper starts with the selection of appropriate
scenes, goes over ground truth estimation to the finally
resulting evaluation of the stereo sensors. Three differ-
ent stereo vision sensors are tested with three different
input scenes. Beside the subjective review of the dis-
parity map images a pixel wise evaluation is carried
out. We mainly describe an evaluation method for ex-
isting stereo sensors which should help developing new
ones.

1 Motivation

The need of dense 3D information to support robots
and autonomous systems is increasing permanently.
Service robots require dense depth information to ful-
fill their tasks [4] and intelligent vehicles rely on ac-
curate sensor information to support navigation along
tracks and avoid obstacles [1]. Stereo vision is a ded-
icated technology to deliver dense depth information
and therefore plays a key role in sensing the environ-
ment of a robot or vehicle to get reliable 3D data.

Consequently, our research on stereo vision for ro-
botic and embedded applications led to the need of
an evaluation method for the reliability of 3D infor-
mation. Checking the correctness of a disparity map
is not simple because normally there is no reference
dataset (”ground truth”) available. The acquisition of
such a high-precision depth map can be very complex
and time intensive. There are already several platforms
available, like the good and well known one from Mid-
dlebury College [6] which tries to solve this problem
providing input images for stereo algorithms with the
corresponding dense ground truth disparity maps. On
the one hand side this gives a good possibility to quan-
tify disparity maps in respect to others but on the other
hand side there is no flexibility in the choice of input
images or scenes. In robotic applications, researchers
want to know how accurate their 3D sensors work in
real world environments. Here, the classical difficulties
of stereo matching, like textureless surfaces, occlusions
and reflections get in focus again. This issue led us to
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develop an evaluation platform which attaches impor-
tance to flexibility in scene selection. The goal of our
approach is to find a possibility to quantify 3D-data
produced by different stereo sensors under the aspect
of a setup placed in natural indoor environments.

2 Previous Work

We did not want to produce any results with images
optimized for stereo algorithms or synthetic generated
scenes, but we needed an easy-to-obtain quality met-
ric to evaluate results of stereo vision systems. We
looked for a low-budget and portable solution without
the need of special equipment. There are just a few
low-cost techniques dealing with this issue, i.e. the
prediction error as a metric [7], Self-Consistency [3] or
a pixel-wise comparison with a ”ground truth” data
set. We decided to use a method based on ”ground
truth”, so the problem is how to obtain such a high
accuracy depth map without wasting a lot of time in
hand labeling. Finally we found an adequate technique
in [5] which fits for our requirements. The idea behind
this method is to use structured light to uniquely label
each pixel in a sequence of images, so that the corre-
spondence becomes trivial.

In further sections, we use the term ”ground truth”
for denoting ground truth estimation. This means that
the ground truth images, created by our platform, are
reliable and very dense, but not complete. In this pa-
per, the term ”stereo (vision) sensor” always refers to
the systems (sensors) described in sec. 3.3.

3 Workflow

The workflow of our evaluation approach consists of
four different steps and is illustrated in fig. 1. At first, a
suitable scene is selected. Then a pair of stereo images
of this scene, as input for the stereo sensor systems, is
recorded. After that, the scene is illuminated by the
structured light patterns and captured accordingly. In
the next step these images are used for our ground
truth approximation. This results in a rather good
disparity map which is the basis for evaluation of the
stereo vision systems in the last step.

3.1 Scene selection

Because of the fact that we wanted to use scenes as
close to reality as possible, labor environments should
be excluded. The acts of the scenes should be typical
camera views of a robot for indoor applications. This
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means the main objects a robot has to deal with are
chairs, tables, many kinds of boxes, and furniture in
general. We tried to catch as many common indoor
obstacles as possible to build realistic scenes for our
evaluation. All scenes were recorded in our office under
real world conditions (e.g. no controlled illumination).

Figure 1: Workflow

3.2 Ground truth estimation

As mentioned above the goal of our approach is
to gain depth information from real world scenes us-
ing two cameras for ground truth estimation. In our
setup we project binary gray-code patterns with a NEC
LT245 video beamer to a scene and take the images
with a stereo rig which is described in the next sec-
tion. The image capture setup is shown in fig. 2. The

Figure 2: Image capture setup.

processing pipeline consists of the following stages:

• Camera calibration, acquisition and rectification
of each stereo image pair using the ”Caltech Tool-
box” for Matlab

• Decode the light patterns for each illumination
source to get unique codes for each pixel and com-
putation of disparity map

• Creation of a LUT (lookup table) consisting of
correspondences between each view and each il-
lumination source, determination of the projec-
tion matrices to reproject the code labels using
the LUT

• Combine all disparities

Currently we use ten patterns to encode the horizon-
tal and ten to encode the vertical component. Due to
the limited quality of the camera images we decided

to use also inverse pattern to compute the stripes1.
This doubles the required number of images. For reli-
able detection of shadow areas we use three more im-
ages (black, white and gray illumination). The results
of the decoding process are strongly depend on the
scene. Fogging inside the projector, inter reflections
and highly varying albedos in the scene are causing
wrong code values. Therefore we use different meth-
ods to enhance the quality of the binarized images.
For determination of the position of the stripes, we
use linear interpolation [8]. The detection of stripe-
edges is also possible within sub pixel-accuracy. These
edges are used to smooth the stripes in the first es-
timation of the binary images by a bicubic interpo-
lated (in the appropriate code direction) ”greater or
lesser” comparison over all color channels of the nor-
mal and inverse illuminated image. Afterwards it is
downscaled with a majority filter and the pixels which
contain shadow or have not sufficient contrast to its in-
verse are labeled as unknown. The disparities d(u, v)
(left to right and vice versa) are computed with a ro-
bust block matching algorithm. As input for the next
step only pixels which passed a left-right consistency
check are taken. Using the DLT-method (Direct Linear
Transformation) which is based on the pinhole cam-
era model and treats the first disparity map as a 3D-
reconstruction of the scene, we calculate the projec-
tion matrix P between each view and its illumination
source. Note that the 3D-reconstruction is obviously
registered with the proper view. We can solve the pa-
rameters a11, ..., a34 of the DLT (shown in equ. 1), in a
Linear Least Square-sense, by eliminating wi and using
a constraint to avoid the trivial solution.
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1
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The constraint a34 = 1 as proposed in [5] produces
the best fit. In practice, a small number of pixels with
large disparity errors can strongly affect the fit. We
therefore use an iterative algorithm to detect outliers.
The next step is to compute a new set of disparities
with equ. 1 and the LUT for all illuminated pixels.
This includes pixels, which are not visible from one
view (left or right occluded). Now we repeat the whole
process with a different video projection position (the
stereo rig remains untouched) to reduce shadow areas
and to calculate 3D data in occluded areas. At last we
combine all disparity maps to create a robust result.

3.3 Stereo sensors and matching

Following stereo vision systems are evaluated with
our approach under real world indoor conditions.

1. Point Grey Research: Digiclops2, Triclops3 c©

2. Videre Design: Small Vision System (SVS) [2]

3. Our own stereo vision sensor (still work in
progress)

1binary images created from the captured images of the illu-
minated scenes

2http://www.ptgrey.com/products/digiclops/Digiclops.pdf
3http://www.ptgrey.com/products/triclopsSDK/triclops.pdf
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Table 1: Image parameters.

Sensor 1 Sensor 2 Sensor 3
image size 640×480 640×480 640×480
baseline 10 cm 12 cm 12 cm
focal length 6 mm 6 mm 6mm
block size 11 21 314

disparity range 0 - 40 40 - 168 10 - 140
matching alg. SAD SSD census

Ad 1): Point Grey Digiclops is a three-camera stereo
vision system which uses a SAD [6] correlation algo-
rithm for stereo matching. For our tests, we used
the three-camera system with the appropriate software
(Triclops). Ad 2): Videre Design Small Vision System
is a stereo vision platform consisting of a two-camera
stereo head and a stereo software package. For our
tests, we used the software only, which is the imple-
mentation of an area SSD [6] correlation algorithm.
Ad 3): The third stereo vision system is our own
and is still work in progress. We use a 12cm base-
line stereo head consisting of two The Imaging Source
GmbH FireWire, color, 640×480 cameras and our soft-
ware uses the census transformation [9] for neighbor-
hood dependent matching. These cameras were also
the input source for the SVS software and the ground
truth estimation.

As mentioned above sensor 1 is a complete stand-
alone system. It has its own stereo head and soft-
ware (including matching and calibration). Sensors 2
and 3 both use images captured from sensor 3. It can
be assumed that these cameras are calibrated (Caltech
Camera Calibration Toolbox for Matlab [?]) and that
the images are rectified.

The matching procedure takes a rectified stereo im-
age pair as input, processes it with the proper match-
ing algorithm and finally saves a disparity map (8 bit
grayscale bitmap) as output. The output disparity
map will be evaluated according to our ground truth.

Tab. 1 lists the most important parameters of the
three sensors. The blocksize describes the size of the
window in block matching and is chosen accordingly to
the best sensor results. Remarkable in tab. 1 is the big
difference in the disparity range of sensor 1 compared
to the others. The reasons for this are the different
optics and baseline.

4 Evaluation

After obtaining the ground truth images and all dis-
parity maps of the stereo sensors, the next step is an
evaluation of these results.

Fig. 3 and fig. 4 illustrate our work on two different
real world scenes. The image on the top left of the
figures shows the left stereo image taken with sensor
3. The ground truth image can be found beside it.
The middle image row shows the disparity maps of
sensor 2 (left) and sensor 3 (right). In the last row,
the results from sensor 1 are shown (left stereo image
and disparity map).

Black pixels in ground truth indicate areas without
illumination, areas without sufficient contrast between
normal and inverse pattern illumination or areas where
the decoding process failed. Notably is that occlusions
between the left and right view are eliminated. This

4census transform: 31, block matching: 5

Figure 3: Scene ”copier”. top: left stereo
image and ground truth image; middle: dis-
parity maps of sensor 2 (left) and sensor 3
(right); bottom: results from sensor 1.

can be observed in the ”chair” scene at the edges of
the boxes. In the disparity images pixels are black
where no correspondence according to the used algo-
rithm could be found. Tab. 2 shows our results. It
consists of three different scenes. We excluded sensor
1 from the pixel-comparison, because the available ver-
sion of the software does not support an offline modus
without additional implementations. The internal scal-
ing of the disparities of sensor 2 also causes some prob-
lems. We had to treat it like a black box and used a
linear model to map these disparities according to our
ground truth disparities. We denote sensor disparities
(disps) as valid if they are the same, within a range
(+/- threshold in pixels), as the ground truth disps.
Ground truth disps are available if they are not zero
(not black) in the disparity map. Equally, sensor disps
are found if they are not zero (not black) in the result
disparity map.

Column % present disps shows the ratio between all
found sensor disparities and all available ground truth
disparities. It gives a general information about the
density of the sensor disparities.

Column % valid of all gt disps shows the ratio be-
tween sensor disps and all available ground truth disps
without respect if they were found by the sensor or not.
It answers the question: How many of the available GT
disps were found by the sensor?

Column % valid of found disps shows the ratio be-
tween all found sensor disps and all valid sensor disps.
It answers the question: How many of the found sensor
disps are valid?

In the values of the first two columns is a negative
offset of pixels that are available in ground truth but
not visible in the results, included. This offset can be
seen on the borders of the result images and can be as-
cribed to the disparity search range, the blocksize and
the camera field of view. To create offset independent
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Table 2: Evaluation results.

Scene % present disps Threshold % valid of all gt disps % valid of found disps
Sensor 2 Sensor 3 Sensor 2 Sensor 3 Sensor 2 Sensor 3

couch 13.17 38.4
6 12.43 33.8 94.37 88.01
2 11.7 3.3 89.1 8.65

copier 15.8 42.23
6 14.56 38.6 92.08 91.43
2 11.35 25.76 71.78 61

chair 6.86 30.39
6 1.33 22.98 19.4 75.6
2 0.44 14.16 6.46 46.58

Figure 4: Scene ”chair”. top: left stereo im-
age and ground truth image; middle: dis-
parity maps of sensor 2 (left) and sensor 3
(right); bottom: results from sensor 1.

results, the disparity maps have to be cut accordingly.
The results presented in tab. 2 can be interpreted as
follows.

In the couch scene sensor 3 found more disps than
sensor 2 but the results of sensor 2 are much more re-
liable. Sensor 2 handled the difficulties of this scene
better than sensor 3. In the chair scene, sensor 3 wins
the race. It delivers more dense disparity maps and
they are also more reliable. The copier scene also goes
to sensor 3. The reliability is a little worse but the
results are much more dense. As a consequence, the
indicator for a reliable stereo vision system is a high
value in the last column and for a dense stereo sensor
a high value in the first column. It is difficult to de-
termine the best sensor for a certain application but
our evaluation approach makes the decision a little bit
easier.

5 Conclusion and Outlook

In this paper we presented our approach of evaluat-
ing stereo vision systems using estimated ground truth
images of real world scenes. The ground truth images
are created by illuminating the scenes with structured
light, coding each pixel, stereo matching these code

words and optimizing the result. After ground truth
creation the evaluation of stereo sensors follows. Be-
sides a subjective reviewing of the resulting images a
pixel wise evaluation is used. During our work we came
across many problems which highlighted some future
work to do. First there is the calculation speed of the
ground truth disparity maps. The solution is imple-
mented in Matlab and therefore not speed optimized.
Secondly the cameras and optics are candidates for fur-
ther improvements. Also the evaluation itself could
be more comprehensive, for example the scale prob-
lem could be solved. At last, an inclusion of matching
speed to evaluate real-time requirements would be use-
ful.
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