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Abstract
Dynamic texture is an extension of texture to the 

temporal domain. Recently, a powerful method for 
dynamic texture recognition based on volume local 
binary patterns (VLBP) was proposed. In this paper,
we investigate improvements of the original VLBP 
operator. A proof on the relation of the two rotation 
invariant VLBP patterns is given. Methods for ob-
taining rotation invariance are experimentally 
evaluated with differently rotated dynamic texture 
sequences. An approach for combining uniform and 
non-uniform local binary patterns is also proposed.
Experimental results on DynTex database show the 
effectiveness of the approach, especially its robust-
ness to rotation variations and effective compres-
sion of feature vectors.

1. Introduction 

Dynamic textures (DT) are image sequences of 
moving scenes [1], such as a flowing river, drifting 
smoke, waving foliage, etc. Description and recog-
nition of DTs is needed, for example, in video re-
trieval systems, which have attracted growing atten-
tion. Because of their unknown spatial and temporal
extend, the recognition of DTs is a challenging 
problem compared with the static case [2].   

Chetverikov and Péteri made a survey on ap-
proaches for dynamic texture description and recog-
nition [3], and in [4] some popular methods [5-14] 
were also recently reviewed. Rotation invariant and
computationally effective representation of DT is 
still a problem, and better solutions are needed. 

Recently, a theoretically and computationally 
simple yet very powerful approach was proposed, in 
which dynamic textures are modeled with volume 
local binary patterns (VLBP) [15]. The local binary
pattern (LBP) [16] histogram model developed for 
ordinary textures was extended to a volume model. 
The sequence is thought as a 3D volume in 
X Y T space, and the volume LBP is defined for 

the sequence. The texture features extracted in a 
small local neighborhood of the volume combine the 
motion and appearance together. This approach is 
robust with respect to illumination changes due to 
the gray-scale invariance of the LBP operator. Two 
kinds of rotation invariant descriptors have been 
proposed in [15] and [4], respectively. To reduce the 
lengths of the feature vectors effectively, the uni-
form patterns as defined for LBP in [16] were ex-

ploited in these methods. However, the non-uniform 
patterns are not as negligible in the 3D case as those 
in the ordinary LBP. In this paper, we give a proof
on the relation of the two proposed rotation invari-
ant VLBP descriptors and evaluate the robustness of
different versions to rotation variations. This kind of 
evaluation with rotated image sequences has not 
been usually done for dynamic texture descriptors. 
We also investigate combined use of non-uniform 
and uniform patterns in order to improve the recog-
nition accuracy. Experiments on dynamic texture 
sequences with and without rotation are carried out
to evaluate the performance. 

2 Original VLBP 

 The basic VLBP operator was introduced as a 
measure for dynamic texture recognition in [15].  
Dynamic texture V  in a local neighborhood of a 
monochrome dynamic texture sequence is defined as 
the joint distribution v of the gray levels of 
3 2( 1)P P  image pixels. P is the number of local 
neighboring points around center pixel in one frame. 
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 Invariance with respect to the 

scaling of the gray scale is achieved by considering 

just the signs of the differences instead of their ex-

act values. 
To deal with rotation variations, the original ver-

sion of rotation invariant VLBP [15] computes the 
rotation invariant LBP from each frame, and then 
combines them. But it does not consider the syn-
chronization of the three frames. In real rotation, the 
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three frames rotate simultaneously and rotate same 
angles. This method is referred as ri#1 in the paper. 

Another way for rotation invariance proposed in 
[4] is obtained by rotating the neighboring set in 
separate three frames clockwise, and this happens 
synchronously so that a minimal value is selected as 
the VLBP rotation invariant code. We call it ri#2. 

The pattern set of ri#1 is a subset of ri#2. Here we 

give the proof. 

Proof: Assume A and B are sets of rotation invari-

ant patters r1#1 and r1#2, respectively. 

1) a A , a can be expressed as 

( posCa , posNa , curNa , preNa , preCa ), while preCa  and 

posCa  represent the binary values of the center pix-

els in previous and posterior frames. preNa , curNa ,

posNa  are rotation invariant LBP codes of neighbor-

ing points in previous, current and posterior frames, 

respectively, so they are minimal in their separation 

of rotation operations [15]. Then we perform ri#2 

for a to get b = ( posCb , posNb , curNb , preNb , preCb ) B ,

that means preNa , curNa , posNa  are rotated same 

time to get the combined minimal value b . Obvi-

ously, preC preCb a , posC posCb a , preN preNb a ,

curN curNb a , and posN posNb a .  If preN preNb a ,

curN curNb a , or posN posNb a , the combined code 

b  would be bigger than a , which is inconsistent to 

that b  is minimal.  So preN preNb a , curN curNb a ,

and posN posNb a , then b a . Namely, a B .

2) But for the codes 
' ' ' ' '

' ( , , , , )posC posN curN preN preCb b b b bb B , in which at 

least one of 
'

curNb and
'

posNb is not the minimal pat-

terns in their own rotation variation (
'

posNb  must be 

the minimal to make the b minimal in whole combi-

nation), after the ri#1 operation, obtained 
' ' ' ' '

' ( , , , , )posC posN curN preN preCa a a a aa A is definitely 

not equal to 'b , so 'b does not belong to the set 

A ( 'b A ). For example: 

' (1, 0101,1101, 0011,1)b B  after the r1#1 op-

eration will be ' (1, 0101, 0111, 0011,1)a A ,

so ' 'b a , then 'b A .

In summary, A B  can be concluded.

3.  Combination of Uniform and Non-
uniform Patterns 

As an extension to the original VLBP operator, 
we will use non-uniform patterns jointly with the 
uniform ones. The uniformity measure of a pattern 
is defined as the number of bitwise transitions from 
0 to 1 or vice versa when the bit pattern is consid-
ered circular [16]. A pattern is called uniform if its 

uniformity measure is at most 2. Otherwise, it is 
non-uniform.  

Ojala et al. noticed in their experiments with tex-

ture images that uniform patterns account for a bit

less than 90% of all patterns when using the (8,1) 

neighborhood and for around 70% in the (16,2) 

neighborhood [16]. Therefore, to make the feature 

vector compact only the uniform patterns are used 

while the non-uniform ones are grouped and labeled 

with a single label.  

Fig. 1 Histograms of three DTs using only uniform 
patterns (top); Histograms of three DTs using uni-
form patterns and non-uniform patterns (bottom) 

But in the VLBP, the neighboring points are sam-

pled from three frames with time interval L and the 

number of neighboring points is 3P+2, so the uni-

form patterns are not majority any more, as Fig. 1 

(top) shows, the last label reserved for all non-

uniform patterns will dominate. So to reduce the 

feature vector length and keep effective representa-

tion, the original  label used to express all non-

uniform patterns is split into several patterns by 

computing their number of “1” bits. The combina-

tion of rotation invariant uniform and non-uniform 

VLBP code is denoted as 
2
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' ' '

0 3 1' ( , ..., , ..., )q PV v v v expresses the code after 

rotation invariant transform. Superscript 2riu  reflects 

the use of rotation invariant uniform patterns that

have U  value of at most 2 while 2riunu  is the com-

bination of uniform and non-uniform patterns. So 

the total number of
2

, ,

riunu

L P R
VLBP ’s is: 

(3 3) (3 1) 6 2P P P .  The first 3P+3 are uni-
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form patterns and the last 3P-1 are non-uniform 

ones.
The uniform and non-uniform pattern histograms 

of the same three DTs to Fig. 1 (top) are demon-
strated in Fig. 1 (bottom). It can be seen that only 
using the uniform patterns, these three DTs are al-
most indiscriminating. However, the dispersed non-
uniform patterns can help the discrimination. 

4. Experiments 

To evaluate the performance of our algorithm, 
DynTex, a large and varied database of dynamic 
textures, was selected for the experiments. Fig.2 
shows example DTs from this dataset.  

Fig. 2. DynTex database. 
In classification, the dissimilarity between a sam-

ple and a model VLBP distribution is measured 

using the log-likelihood statistic [15]. Other dissimi-

larity measures like histogram intersection or Chi 

square distance could also be used.  

4.1. Experiments on original dataset without 
rotation

After obtaining the VLBP features on the basis of 
different parameters of L , P and R , a leave-one-
group-out classification test was carried out based
on the nearest class. In the experiments, the same 
test setups as in [15] were used. Each sequence was
divided into 8 non-overlapping subsets, but not half 
in X , Y and T . The segmentation position in volume 
was selected randomly. These eight samples do not 
overlap each other, and they have different spatial
and temporal information. Sequences with the origi-
nal  size  but  only  cut  in  time  direction  were also  

included in the experiments. So we can get 10 sam-
ples of each class and every sample is different in
image size and sequence length to each other.  
Table 1 presents the overall classification rates. 
Results from combination of uniform and non-
uniform patterns (last row) are better than those 
from only the uniform patterns (first row) with a 
slight increase of the feature vector length.  
Table 1. Results (%) in DynTex dataset. (riu2 is 
rotation invariant uniform, while riunu2 is  rotation 
invariant combining uniform and non-uniform pat-
terns. The numbers inside the parentheses demon-
strate the lengths of corresponding feature vectors.) 

1,2,1
VLBP

2,2,1
VLBP

1,4,1
VLBP

2,4,1
VLBP

riu2[4] 83.43 (10) 83.43 (10) 88.57 (16) 85.14(16) 

riunu2 85.71 (14) 86.86 (14) 89.71 (26) 88.86(26) 

4.2. Experiments on rotated sequences 

To evaluate the true rotation invariance of the 

methods, each sequence was rotated by 15 degree 

intervals as shown in Fig. 3, obtaining 24 sequences 

in total. Every sequence was cut in length into two

sequences; so totally we have 35 classes each with 

48 samples. In our experiments, two sequences with 

0 degree (no rotation) were used as training samples, 

and the remaining ones were test sequences. Hence, 

in this suite, there are 70 (35x2) training models and 

1610 (35x46) testing samples. 

Table 2 demonstrates the results of different patterns 

for all rotation tests. It can be seen that a combined 

use of uniform and non-uniform patterns in rotation

invariant 
1,4,1

VLBP  obtained 87.14% for all rotations 

(last row in Table 2) with just 26 bins. All this kind 

of descriptors achieved better results than those 

using only uniform patterns, which proves the effec-

tiveness of including non-uniform patterns.  

0º                        15º                      30º                      45º                      60º                        75º 

90º                     105º                     120º                    135º                    150º                    165º 

180º                   195º                     210º                    225º                     240º                      255º

270º                  285º                    300º                     315º                      330º                      345º
                                           Fig. 3. Images after rotating by 15º intervals
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Table 3 lists the results for testing just in every 90 

degrees and 45 degrees rotation. ri(ordinary) in 

Table 3 represents to perform the a circular bit-wise 

right shift on the 3 2P -bit VLBP code and select 

the minimal one as rotation invariant patterns, which 

is same to that done in static textures [16]. But this 

approach considers the VLBP code as a whole and 

assumes the texture rotates round one point, which 

is not suitable for the dynamic texture rotation. 

It can be seen that ordinary rotation invariance 

(first, fourth and seventh rows) cannot deal with the 

rotation at all, not even when testing with rotations 

of 90 and 45 degrees. Rotation invariant version #2

outperforms #1. Combination of uniform and non-

uniform rotation invariant patterns performs better

than only uniform patterns (last three rows vs. mid-

dle three rows).  

Table 2. Results using different patterns. (The num-

bers inside the parentheses demonstrate the lengths

of corresponding feature vectors) 

1,2,1
VLBP

2,2,1
VLBP

1,4,1
VLBP

2,4,1
VLBP

Basic 

VLBP 

56.71 

(256) 

59.81 

(256) 

48.76 

(16384) 

48.26 

(16384) 

riu2 #2 59.07(10) 60.62(10) 82.8(16) 79.75(16) 

riunu2 #2 60.37(14) 62.24(14) 87.14(26) 81.74(26) 

Table 3. Comparison for every 90º and 45º rotation.

1,4,1
VLBP  90º 45º 

ri (ordinary) 58.1% 52.24% 

ri #1 97.14% 75.92% 

ri #2 98.57% 78.78% 

riu2 (ordinary) 69.52% 61.63% 

riu2 #1 97.14% 80.82% 

riu2 #2 97.14% 82.45% 

riunu2 (ordinary) 74.29% 68.57% 

riunu2 #1 97.14% 82.45% 

riunu2 #2 97.14% 85.71% 

Our results are very good compared to the state-

of-the-art. In [8], a classification rate of 98.1% was 

reported for 26 classes of the DynTex database 

without rotations. Furthermore, their test and train-

ing samples were only different in the length of the 

sequence, but the spatial variation was not consid-

ered. This means that their experimental setup was 

much simpler. When we experimented using all 35 

classes with same experimental setup, a 100% clas-

sification rate was obtained. 

5. Discussion 

Improvements of the rotation invariance of the 

recently proposed VLBP operator were considered. 

The relation between two versions of rotation in-

variant VLBP patterns was proven. Methods for 

obtaining rotation invariance were experimentally 

evaluated and an approach for combining uniform 

and non-uniform patterns was proposed. Because the 

neighboring points in the original VLBP are from 

different frames, the patterns were shown to be not

uniform any more. The original method of using one 

label to express all non-uniform patterns was substi-

tuted by dispersing the non-uniform patterns and 

labeling them separately as we did for uniform pat-

terns. In the experiments on the dynamic textures 

recognition with and without rotation variation, the 

operators combining uniform and non-uniform pat-

terns outperformed those using only uniform pat-

terns.  
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