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Abstract

Tracking is an important topic in computer vision and

object recognition. Recently, a probabilistic approach us-

ing particle filters has been applied to track moving objects.

This kind of approach often uses a color histogram to esti-

mate a likelihood function for probabilistic tracking. When

two similar objects cross each other in view, the likelihood

becomes high for both. This often causes tracking to fail.

This paper proposes a new method to address the object

crossing problem. The method estimates the object region,

splits the region into horizontal zones, and calculates sim-

ilarity based on each split region and each horizontal zone

of the target. The new method makes the tracking of similar

targets more robust when those targets cross. Results are

demonstrated on real video sequences.

1 Introduction

A particle filter is one technique for motion tracking that

is robust in the presence of occlusion and noise. Particle

filters, also called Sequential Monte Carlo methods (SMC)

[1], are a sophisticated model estimation technique based

on simulation. They implement Bayesian filtering and are

used to estimate Bayesian models.

A particle filter is a maximum posteriori estimation

method based on past and the present observations. It can

achieve robust tracking even when the observation distribu-

tion is non-Gaussian. It approximates the discrete probabil-

ity density where the random variables are represented by

many particles. Particle filters now are widely used in mo-

tion tracking as well as in speech recognition and in many

other applications.

A particle filter approach can be combined with other

algorithms to make overall performance even stronger. The

authors recently have proposed a particle filter approach to

track moving objects using multiple cameras. This involves

the passing of a moving object from the view of one camera

to another over a wide region [2]. Also included is a method

to track robustly under uniform illumination change [3].

One previous particle filter approach uses color his-

tograms [4] except that the edge strength is used to calcu-

late the likelihood function. Color histogram approaches

can fail to track crossing or partially occluded objects when

the colors are similar. Additional information is required.

One idea is to combine the likelihood distributions obtained

from from each camera in a multiple camera and hence mul-

tiple view configuration [5]. Another is to impose specific

spatio-temporal knowledge, for example, a model of human

walking [6].

This paper describes a new approach to improve object

tracking with a single camera and a fixed viewpoint. The

method estimates the image region corresponding to the ob-

ject tracked, splits the particles into sub-regions and calcu-

lates similarity to detect the interference of one object with

another. The new method makes the tracking of similar tar-

gets more robust when those targets cross in view. Results

are demonstrated on real video sequences.

2 Particle Filter Based Tracking

2.1 Principle

Time sequential filtering is a method to estimate the most

suitable value from the past and present observation values.

Let the state of tracking a target at time t be xt, and let the

corresponding image observation be zt. Let the total obser-

vation results at time t be Zt = (z1, . . . , zt). The proba-

bility density of xt given zt is discretely approximated by

many particles with state and likelihood. Tracking robust to

both noise and variation in the environment is performed.

Particle filtering approximates the posterior p (xt|Zt) at

time t with N particles which consist of the state x and an

associated weight. The weight π
(i)
t for state x

(i)
t , the i-th

hypothesis, at time t is evaluated by the likelihood function

p
(

zt|xt = x
(i)
t

)

. Tracking with hypotheses is realized by

repeating the following process.
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Figure 1. Weak Perspective Projection

1. Sample the hypotheses
{

s
′(1)
t−1, . . . , s

′(N)
t−1

}

using

the weight π
(i)
t−1 and the state x

(i)
t−1 of particles

{(

x
(i)
t−1, π

(i)
t−1

)

, i = 1, . . . , N
}

to approximate the

posterior distribution p (xt−1|Zt−1) at time t − 1.

2. Generate N hypotheses x
(i)
t at time t from the sampled

hypotheses s
′(i)
t−1.

3. Estimate likelihood functions from the x
(i)
t and the

weights π
(i)
t . Here, the weights are normalized so that

∑N
i=1 π

(i)
t = 1.

Particles
{(

x
(i)
t , π

(i)
t

)

, i = 1, . . . , N
}

are obtained

as a discrete approximation of the posterior distribu-

tion p (xt|Zt) at time t. The mean value of the hy-

potheses is used as the estimated state for the tracked

target at time t.

2.2 Estimation of Target Size

Estimating the target region to track improves tracking

precision. As shown in Figure 1, weak perspective pro-

jection assumes that camera centric coordinates (X,Y, Z)
project to image coordinates (u, v). A pinhole camera mod-

els gives

u = f
X

Z ′
v = f

Y

Z ′
(1)

Z ′ is the distance, assumed fixed, of the object from the

lens along the Z-axis. Let A be the area of the object pro-

jected onto the plane parallel to the image plane. Then the

corresponding area A′ on the image plane is estimated by

A′ = f2 A

Z ′2
(2)

If A, Z ′ and f are known a priori, then A′ is an estimate

of target size in the image. Similarly, the aspect ratio of

A estimates target width and height. Camera calibration

determines target size and aspect ratio. Coordinates (u, v)
are used as state variables.

3 Crossing of Targets with Similar Pattern

There are two cases to consider at a crossing. The first

case is when multiple particle groups track a single target.

The second case is when particle groups switch targets.

Figure 2. Circular Region for Detec-

tion of Interference

3.1 Interference of Particle Groups

In this section, a method to judge when two particle

groups come close to each other is described. Particles are

generated by the Box-Muller method with Gaussian distri-

bution of random variables. Image coordinates (u, v) are

the random state variables. Particles are distributed ac-

cording to a 2D Gaussian distribution with constant val-

ues of the standard deviations σu and σv . For a Gaussian,

about 99.74% of the particles are included within a win-

dow of ±3σ. We assume ±3σu as the maximum width in

the u-direction and ±3σv as the maximum width in the v-

direction.

Let (ut, vt) be the image coordinates of the tracked ob-

ject estimated as the weighted mean value of all the par-

ticles. Consider a circle with radius r centered at (ut, vt)
where

r =
√

(3σu)2 + (3σv)2 (3)

This circle with radius r is used to determine interfer-

ence among particle groups. As shown in Figure 2, when

the particle group of a second tracked object overlaps the

circle associated with the particle group of a first, the two

objects are judged to have become close to each other.

3.2 Horizontal Split Histogram

As shown in Figure 3, the rectangular tracking region

is split into m regions horizontally. A hue (H) and satu-

ration (S) histogram is generated for each region Hi(i =
1, 2, 3...,m). The HS histogram of the first frame, also

split into m regions horizontally, is used as a reference his-

togram. The similarity Si for each region is calculated by

Swain’s histogram intersection [10] as

Si =

T
∑

u=1

min(Hu,Href
u ) (4)

where 1, . . . , T is the range of H and S values in the HS

histogram. The overall similarity S is obtained as the mean

of the similarities Si for each region.

S =
m

∑

i=1

Si

m
(5)
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Figure 3. Horizontal Split

Histogram

3.3 Weighting of Particles Using Distance

When two particle groups A and B come close to each

other, the likelihood can become high for both tracked ob-

jects. As a result, one of them can become tracked by both

particle groups. Figure 4 provides an example. The crite-

rion for overlap is as discussed before. To improve track-

ing, the likelihood of a particle hypothesis s
(i)
t in group

A is reduced when group B overlaps group A. Individ-

ual particle hypotheses belonging to group A are assigned

smaller weights when they come close to group B and larger

weights when they are more distant from group B. As with-

out overlap, the weight assigned to individual particle hy-

potheses in group A is inversely related to the distance from

group A.

This is implemented as follows. Let d
(i,ja)
1 be the dis-

tance between a particle i belonging to group A and another

particle ja also belonging to group A. The mean distance

d
(i)
1 is calculated inside group A according to Eq.(6). Simi-

larly, let d
(i,jb)
2 be the distance between a particle i belong-

ing to group A and another particle jb belonging to group

B. The mean distance d
(i)
2 to group B is calculated accord-

ing to Eq.(6). That is, for all particles in group A, d
(i)
1 and

d
(i)
2 (i = 1, . . . , N) are given as

d
(i)
1 =

N
∑

ja=1

d
(i,ja)
1

N
, d

(i)
2 =

N
∑

jb=1

d
(i,jb)
2

N
(6)

Consider the likelihood function given in Eq.(8). The

similarity S of the color histogram has a value between 0

and 1. We normalize the distance values, as well. Let d1max

and d2max be the maximum values, respectively, of d1 and

d2, the mean values of the distance to each group. Then,

the normalized distances D
(i)
A and D

(i)
B are obtained as

D
(i)
A =

d
(i)
1

d1max

, D
(i)
B =

d
(i)
2

d2max

(7)

Recall that S is the similarity obtained from the color

histogram. A standard likelihood function to track a single

moving object is

L(zt|xt) = exp(kS2) (8)

where k is a constant. The modified likelihood function

used here is

L(zt|xt) = exp(k1S
2) exp(k2D

(i)
B (1 − D

(i)
A )) (9)

Figure 4. Likelihood Distribution in

Case of Tracking Left Object

where k1 and k2 are constants.

4 Experiments

The implementation uses C++ on MS Windows XP and

DirectShow. The video camera is a SONY DCR-HC40.

Frames in the video sequences are 720 × 480 pixels, 24 bit

color. The PC used was an Athlon64×2 Dual Core Proces-

sor 4200+ with 2 GB Main Memory.

Comparison is between a previous approach [4], based

on Eq.(8), and the proposed approach, based on Eq.(9). The

number of particles for each target is 50. Constants k, k1

and k2 are set to 20, 20 and 5, respectively. Success ratios

and failure ratios for object crossings are calculated. “Suc-

cess” is when the particles track each target correctly during

a crossing.

There are two failure cases to consider. The first case

is when the tracked target changes with the crossing (Fail-

ure A). The second case is when multiple particles track a

single target after the crossing (Failure B). Four kinds of

video sequences were evaluated. Examples from scene 1

and scene 3 are shown in Figure 5 and 6, respectively. Sig-

nificant improvement is observed. Evaluation results for

four scenes are shown in Table 1 for [4] and in Table 2 for

the proposed approach.

Table 1. Evaluations for Previous Approach
Scene Succ.Ratio [%] Fail.A [%] Fail.B [%]

1 65.22 0.00 34.78

2 80.00 0.00 20.00

3 7.50 0.00 92.50

4 77.19 0.00 22.81

Table 2. Evaluations for Proposed Approach
Scene Succ.Ratio [%] Fail.A [%] Fail.B [%]

1 100.00 0.00 0.00

2 100.00 0.00 0.00

3 88.57 0.00 11.43

4 58.95 40.00 1.05
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Input Images

Previous Approach

Proposed Approach

Figure 5. Examples of Scene 1

Input Images

Previous Approach

Proposed Approach

Figure 6. Examples of Scene 3

Table 1 and Table 2 suggest that the ratio of Failure B

becomes lower for all scenes. This demonstrates that sep-

arating the particle groups based on the distance of parti-

cles can make tracking crossings of similar targets more ro-

bust. The success ratio also increases for scenes 1 to 3. For

scene 4, the ratio of Failure B decreases but the ratio of

Failure A increases resulting in an overall decrease in the

success ratio. The increase in Failure A resulted from ad-

ditional target switches even when the two particle groups

did not come very close each other. When this happens, it

remains necessary to correct tracking by other means. In

our implementation, the previous approach took 9.7 [ms/f]

and the proposed approach took 10.0 [ms/f]. In each case,

this exceeds the video rate of 30 [fps] and real-time perfor-

mance is achieved.

5 Conclusion

This paper presented a new approach to object track-

ing that is robust even when visually similar targets cross

in view. The method uses a similarity measure calculated

from the horizontal split histogram and a distance measure

to the particle groups. Tracking when objects cross is better

able to keep particle groups separate, since overlap is made

explicit and distance within and between particle groups is

incorporated into the likelihood function. Experiments con-

firm that cases where two distinct particle groups converge

to a single target are reduced. Cases involving more than

two targets crossing simultaneously remain as a topic for

further study.
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