
FAST GRAPH SEGMENTATION BASED ON STATISTICAL AGGREGATION PHENOMENA

Frank Nielsen

Sony Computer Science Laboratories, Inc.

Tokyo 141-0022, Japan

Frank.Nielsen@acm.org

Richard Nock

CEREGMIA/Univ. Antilles-Guyane

97275 Schoelcher, Martinique, France

Richard.Nock@martinique.univ-ag.fr

ABSTRACT

In this paper, we first generalize a recent statistical color im-

age segmentation algorithm [5] to arbitrary graphs, and report

its performance for 2D images, 3D meshes and volume data.

We then describe a fast pre-segmentation to the main graph

procedure that allows us to further speed-up the segmentation

by a factor of ×2 to ×4, without decreasing significantly the

quality of segmentations. As an application, we built a real-

time video segmentation that is robust enough to be used in

camera-driven user interfaces and robotics applications.

1. INTRODUCTION

Segmentation is the fundamental task of grouping raw data

into a small number of perceptual units: the so-called seg-

ments. Although image segmentation has been studied from

the very beginning of computer vision [1] in the 1970s, it

is still nowadays an unsolved and yet hot topic. Since its

inception, segmentation has been tackled for various types

of data: color images, videos, range images (as known as

depth images), 3D volume data (such as CTs or MRIs), 3D

meshes, etc. In Section 2, we present a generalization of a

statistical color image region merging framework [5] to ar-

bitary graphs. Graphs are convenient universal structures to

manipulate, that encode both data and their topologies. Sec-

tion 3 describes how to design concentration inequalities for

the generic graph region merging algorithm, and report on

segmentation results for various data types: 2D color images

(Section 3.1), 3D meshes(Section 3.2), and gray volume data

(Section 3.3). Segmenting frame-by-frame video requires a

lot of processing power. We present in Section 4 a video-rate

segmentation algorithm that proceeds by pre-segmenting ef-

ficiently images in order to build a reduced graph on which

the generic segmentation is then applied. Finally, Section 5

concludes our paper.

2. GRAPH SEGMENTATION BY REGION

GROWING

Region growing is one of the oldest area-based image seg-

mentation algorithm [1]. A region growing process starts by

first initializing for each pixel a corresponding single-pixel

region, and then merge stepwise similar adjacent regions un-

til no more fusion is attainable. Thus, at a given step, region

growing considers implicitly the underlying region adjacency

graph (RAG), and based on a merging predicate, decide to

merge or not the current pair of adjacent regions. Usually,

the RAG is dynamically updated whenever merging occurs.

Let G = (V, E) be an arbitrary graph of |V| = n nodes and

|E| = m edges. Let E.a and E.b denote the two nodes defin-

ing the edge extremities: E = (E.a,E.b). To each node

V of V (defining a region), we further associate a unique

ID denoted by RegID(V), and a mean feature vector f̄(V)
(say, mean color channels for pictures or mean area/normal

for triangle mesh, etc), and its region size n(V). We further

weight each edge E ∈ E using a weighting function w(·).
Let Er = {E ∈ E|w(E) ≤ r} denote the set of edges with

weights less than or equal to r. Our graph region growing

algorithm is a generalization of the color image segmentation

of [5] that first proceeds by sorting edges in increasing or-

der of their weights, and then inspects iteratively each edge

E = (E.a,E.b) to determine whether the two associated re-

gions (hooked up by their IDs) should be merged or not. The

algorithm is fast because it does not maintain dynamically

the RAG and yet deliver provably good segmentations under

some statistical model [5] (see Section 3). We summarize the

graph region growing process as follows:

GRAPHSEGMENTATIONBYREGIONGROWING(G = (V, E , w))
1. � Sort in increasing order edges according to their weights �

2. E ′ ←− SORT(E , w)
3. for i ← 1 to |E ′|
4. do

5. if RegID(E′

i.a) �= RegID(E′

i.b)
6. then if PREDICATE(RegID(E′

i.a), RegID(E′

i.a))
7. then � Update f̄(.) and n(.) accordingly �

8. MERGE(RegID(E′

i.a), RegID(E′

i.b))

Merging and updating region IDs is done efficiently us-

ing the disjoint set union-find data structure of Tarjan [7].

Although one call to MERGE can potentially requires loga-

rithmic time to update region IDs, a sophisticated amortized

analysis proves that it merely costs almost constant time [7].

Therefore the graph region growing procedure is quasi-linear.1

1Linear for all practical cases. Slightly supra-linear in theory [5].

150

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN

3-31

(a) |E0| = 14802 (b) |E5| = 1894775

(c) |E10| = 3186900 (d) |E148| = 4144163

Fig. 1. Intermediate segmentation results of a high-definition

1920x1080 color toy image pencils after processing all

edges Er, for r ∈ {0, 5, 10, 148}.

The quality of segmentation clearly depends on both the merg-

ing predicate and the edge order. In [5], a predicate based on

statistical aggregation phenomena2 was given for color im-

ages and it was further shown that under some particular edge

order, the resulting segmentation was close to the “optimal”

segmentation with high-probalibity. In the next Section, we

show how to build initial graphs, give predicate functions

based on concentration inequalities, and report on segmen-

tation results for 2D images, 3D meshes, and volume data,

respectively.

3. CONCENTRATION INEQUALITIES AND

SEGMENTATION RESULTS

3.1. Segmenting Color Images

Let I be a RGB color image of width w and height h. To

each pixel (i, j), we associate a node Vi,j with unique ID

RegID(Vi,j) = i × w + j. We consider the 4-connexity3

model of images (C4) so that besides pixels on the border,

all interior pixels have exactly four neighbours that define ac-

cordingly edges. Edges are weighted according to the maxi-

mum color channel difference:

w(E = (Vi,j , Vi′,j′)) = maxc∈{R,G,B}(|Ic(i, j)−Ic(i
′, j′)|).

The total number of edges is m = 2wh − w − h. The

merging predicate based on concentration inequalities is de-

fined as:

max
c∈{R,G,B}

(

Īc(i, j) − Īc(i
′, j′)

)2
≤ b(ni,j) + b(ni′,j′) (1)

where b(x) = 256
2

2Qx
(min(256, x) log x + 2 log 6wh) [5], and

ni,j (ni′,j′) denote the number of pixels in the region con-

2For example, the sum of independent uniform random variables yields a

Gaussian random variable (well-known central limit theorem). More gener-

ally, statistical aggregation phenomena have been recently found for random

variables satisfying loose distribution assumptions [4].
3Setting the connexity of pixels to C8 doubles the number of edges with-

out improving much the segmentation.

(a)

(b)

(c)

Fig. 2. Segmentation results for 3D meshes: (a) cow and

(c) hand models (5804 and 654666 triangles, respectively).

(c) is a snapshot of the mesh segmentation software where

parameter Q can be tuned on-the-fly using the slidebar.

taining pixel (i, j) ((i′, j′), respectively). Parameter Q (Q =
32 by default) controls the granularity of segmented regions.

Figure 1 depicts the intermediate segmentations as the algo-

rithm proceeds through the sorted sequence of edges. Ob-

serve in this case that 75% edges have weights below 10 and

that picture of Fig. 1(c) is very close to the final segmentation

shown in Fig. 1(d).

3.2. Segmenting 3D Meshes

Segmenting meshes is an important ingredient of geometry

processing. Applications of mesh segmentation include pa-

rameterization and texture mapping (texture atlas), morph-

ing, multi-resolution modelling, editing, compression, anima-

tion and shape matching. Prior work [6] of mesh segmenta-

tion algorithms are either based on region growing, or hierar-

chical/iterative/spectral clusterings, often requiring quadratic

time (and thus limiting meshes to a few thousand triangles).

Thus, those methods first require to simplify and remesh ap-

propriately original data (introducing some kind of distortion

and somehow presegmenting the raw mesh) to then segment

new small-size meshes using matrix decomposition techniques.

Our segmentation is fast enough to tackle directly the origi-

151

nal mesh input. Our graph segmentation algorithm partitions

3D meshes at rate of a million triangles per second on com-

modity PCs, and hence is suitable for interactive applications.

Consider any triangular mesh with t triangles T1, ..., Tt. They

are several ways4 to define input graphs depending the rela-

tionships of triange/vertex/edge. We choose to associate for

each triangle T a node V ∈ G. Then, we define a (graph) edge

Ek,l if and only if the corresponding triangles Tk and Tl share

a common edge, and set the weight w(Ek,l) as the area differ-

ence of adjacent triangles: w(Ek,l) = |area(Tk)− area(Tl)|.
The merging predicate which exploits the same concentration

inequality as [5] return true if and only if:

(V̄k − V̄l)
2 ≤

(nk log nk + nl log nl)

Q
(

1

nk

+
1

nl

), (2)

where V̄i and ni denote respectively the mean triangle area

and the number of triangles in the region containing node Vi,

for i ∈ {k, l}. Q is a scalar parameter5 controlling the coarse-

ness of segmentation (useful for multi-scale segmentation or

oversegmentation settings). Figure 2 reports the segmentation

obtained at interactive rate by adjusting parameter Q. Tri-

angle area statistics are surprisingly good enough6 to obtain

nice segmentations, because most meshes are either scanned

regularly or appropriately isotropically remeshed. That is,

meshes seem to often encode into triangle areas the implicit

surface characteristics. Note that as a preprocessing step,

source meshes can be remeshed to meet that condition.

3.3. Volume Images

3D images are dense sets of voxels stored into image stacks

(slices). Most of the 3D voxel data are acquired in gray in-

tensities. We use the 6-connexity (C6) of voxels to define the

node/edge graph and choose the merging predicate similarly

to Section 3.2. Result of the segmentation is displayed in Fig-

ure 3 for two different values of multi-scale parameter Q.

4. VIDEO-RATE IMAGE SEGMENTATION

To further improve the running time of the color image seg-

mentation of Section 3.1 to reach video-rate, one may first

consider downsizing the source image. However downsiz-

ing images degrades significantly the segmentation quality.

A better approach consists in reducing the number of graph

nodes and edges by performing a fast block pre-segmentation:

We split the image into regular blocks of size s × s and com-

pute for each block its color extrema for each channel. If the

max/min difference is below a given threshold for each color

channel, we label the block as “uniform”. Otherwise, the

4Namely, three ways (graph node/graph edge): triangle/edge, trian-

gle/vertex and edge/vertex.
5Although Q has the same meaning as in Eq. 1, its value is different.
6We also tried triangle normals but found out that area worked best.

(a) Source (b) Seg. Q = 32 (c) Seg. Q = 3

Fig. 3. Result of the segmentation of a grayscale MRI volume

data (256 × 256 × 34 voxels). Column (a) shows source im-

ages, (b) result of a typical segmentation, and (c) result of an

oversegmentation. Segmentation took less than one second.

block is said “nonuniform.” We then consider adjacent pairs

of blocks when building the graph edges. For uniform/uniform

pairs of blocks, we create only two nodes and a single edge

linking the corresponding presegmented regions (squares of

s2 pixels). For uniform/nonuniform blocks, we create in-

teredges as before but there is no intra-edge in the uniform

block (modeled by a single node). Although this scheme

can be straightforwardly extended in a hierarchical way, we

found it ran better on a single level by choosing blocks of

4 × 4 = 16 pixels (we usually remove 85% of edges. The ta-

ble below gives some statistics for image pencils (resized

to 720 × 480) of Fig. 1:

Block size #uniform/#total #uniform% seg. time (msec)

24 × 24 331/600 55% 20
16 × 16 954/1350 70% 16
4 × 4 20251/21600 93% 14, 7
2 × 2 85444/86400 98% 20, 2

152

(a)

(b)

Fig. 4. (a) shows the picture with uniform blocks colored

in black and the result of the segmentation. (b) shows the

segmentation with all edges with weights less than 10 and

20 automatically merged, respectively. Observe that in the

rightmost picture some pencils disappeared (overmerged with

the background region).

Observe that although there are more 2× 2 blocks than 4× 4
blocks, it takes more time to label then as uniform/nonuniform.

This explains our choice for 4× 4 blocks. In practice, we ob-

serve a ×2 to ×4 speed-up factor in segmentation.

To further improve speed, we decide to automatically merge

all edges whose weights are below some prescribed thresh-

old. Doing so, we avoid to compute PREDICATE for pairs of

regions that are anyway likely to merge. Figure 4 displays

the benefit of bypassing the predicate evaluation for those

edges. Observe that the background of picture pencil is

segmented into a single region. To avoid annoying flickering

effects when segmenting frame-by-frame videos, we only re-

sort graph edges every p frames (p = 30 in our setting). The

video segmentation implementation uses the generic graph li-

brary with DirectShow R© (Figure 5). The system runs at 30

fps for half DV size (320x240) on an Intel Pentium IV 3.6

GHz equipped with 1 GB RAM. No processor-level SIMD

optimization has been done. Our algorithm has been success-

fully used for more elaborate vision tasks in mobile robots.

Indeed, real-time video segmentation is a crucial component

for RoboCup challengers7. See [2, 3] for some up-to-date

reports on current embarked segmentations used by soccer

robots.

5. CONCLUDING REMARKS

We presented a fast linear-time and versatile graph segmen-

tation algorithm based on the region growing paradigm that

does not require to maintain dynamically the region adjacency

graph (RAG). The quality of our segmentations is achieved by

using tailored merging predicates that rely on concentration

inequalities exploiting statistical aggregation phenomena [4].

7http://www.robocup.org

Fig. 5. Screen snapshot of our real-time live camcorder video

segmentation (Sony HDR-HC1, MPEG-2 transport stream at

25 Mbps).

The full segmentation library code is a mere few hundred lines

of C++ making it ideal for embedded systems. Segmentation

is fast enough for handling 1M triangle meshes at interactive

rate or segmenting VGA live video feeds. We will perform

live VGA video segmentation of the audience during the pre-

sentation.

6. REFERENCES

[1] A.Rosenfeld. Picture processing by computer. Academic Press,

1969.

[2] A. de Cabrol, P. Bonnin, M. Silly-Chetto, V. Hugel, and

P. Blazevic. Clear box evaluation of vision algorithms: Appli-

cation to the design of a new color region growing segmentation

for robotics. In 8th International Symposium on Signal Process-

ing and its Applications (ISSPA). IEEE, 2005.

[3] C. Gönner, M. Rous, and K.-F. Kraiss. Real-time adaptive

colour segmentation for the RoboCup middle size league. In

RoboCup 2004: Robot Soccer World Cup VIII, volume 3276 of

Lecture Notes in Computer Science, pages 402–409. Springer,

2004.

[4] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid,

J. ramirez Alfonsen, and B. Reed, editors, Probabilistic mMeth-

ods for Algorithmic Discrete Mathematics, pages 195–248.

1998.

[5] R. Nock and F. Nielsen. Semi-supervised statistical region re-

finement for color image segmentation. Pattern Recognition,

38(6):835–846, 2005.

[6] A. Shamir. A formulation of boundary mesh segmentation. In

Int. Sympos. 3D Data Processing, Visualization and Transmis-

sion (3DPVT), pages 82–89, 2004.

[7] R. E. Tarjan. A class of algorithms which require nonlinear time

to maintain disjoint sets. J. Comput. Syst. Sci., 18(2):110–127,

1979.

153

