
A Real-Time Hand Gesture Interface

Implemented on a Multi-Core Processor

 Tsukasa Ike Nobuhisa Kishikawa Björn Stenger
Toshiba Corporation

1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan
tsukasa.ike@toshiba.co.jp

Abstract

This paper describes a real-time hand gesture recogni-
tion system and its application to VCR remote control.
Cascaded classifiers are used to detect a number of dif-
ferent hand poses. In order to detect a hand in real time,
the detection algorithm is optimized for multi-core proc-
essors by distributing the operations to multiple cores and
minimizing the data transmission between them. We have
implemented a detection system on a processor with eight
cores. Further we have integrated the system into a proto-
type video recorder simulator to evaluate a gesture
interface for consumer electronics. The operating speed
increases by a factor of up to 13.5 compared to a standard
PC with single-core processor.

1. Introduction

In daily life remote controls are used to activate con-
sumer electronic products such as televisions, video
recorders and air-conditioners. However, the number of
remote controls and number of different functions of each
may be confusing for some users. In such cases gesture
control is a viable option for basic operation if the system
is able to work in the complex visual scenes which may be
present in a living room.

Freeman and Weissman presented a method for TV re-
mote control by hand gestures [2]. They used normalized
correlation and edge orientation to detect an open hand.
However, the matching cost is high because normalized
correlation is calculated for all candidate sub-windows,
thus the detection area and the variation of the detection
sub-window is restricted. Many systems employ a previ-
ously learned skin color model, for example Bretzner et al.
[1] used multi-scale color features for hand posture detec-
tion. However, determining skin color is difficult because
it depends on the lighting condition as well as each indi-
vidual. Including other cues such as motion and edges [6]
can improve the robustness.

Recently cascaded classifiers, originally developed for
efficient face detection, have been applied to hand detec-
tion [3,5]. No skin color model is required and the method
works under a large range of imaging conditions. One
difficulty however is that background regions are usually
included in the cropped training samples. Kölsch and Turk
[3] have shown that such a detector works well in differ-
ent environments for some hand poses given that the hand
shape is well aligned. Ong and Bowden [5] used a classi-
fier hierarchy where hand regions are detected initially
and subsequently the pose is determined. The system was
reported to perform well in uniform backgrounds.

In this paper we implement the detection method using
joint rectangle features [4] for hand detection. This is an
extension of Viola and Jones’ object detection method [7]
but allows for the combination of multiple features in each
weak classifier. In [7] the detector is scanned across the
image and each sub-window is evaluated using detection
cascades which consist of a series of classifiers. The initial
classifier rejects the majority of sub-windows with very
little processing so that the total computational cost be-
comes smaller. By using joint features, co-occurrences of
multiple features are evaluated, resulting in better classi-
fication performance for the same number of features
compared to [7]; see [4] for an evaluation on face data.

The operating speed of hand posture detection is still
not fast enough to detect multiple hand postures in real
time. When using separately trained detectors, one for
each pose, the computation cost increases in proportion to
the number of detectors. We achieve the target frame rate
by optimizing the detection on a multi-core processor. For
efficiency we introduce two kinds of optimization meth-
ods. First, we modify and divide the operations so that
they can be executed efficiently using all cores. Further
two kinds of parallel operations for feature computation
are introduced. We confirm the efficiency of the method
through experiments using a system with a Cell Broad-
band Engine™, which consists of eight cores. We achieve
a speed-up factor of up to 13.5 compared to an implemen-
tation on a standard PC with Xeon processor.

2. Prototype hand gesture UI system

Figure 1 shows the prototype hand gesture UI system. It
consists of five components; the Cell reference set (CRS:
Fig. 1(a)), a display for the recognition result (Fig. 1(b)), a
video camera for capturing images (Fig. 1(c)), a PC for
running the video recorder simulator (Fig. 1(d)), and a
simulator display (Fig. 1(e)).

(a) Cell

reference set

(CRS)

(b) Display for

the recognition result

(d) PC

for running

the simulator

(e) Simulator

display

(c) Video camera

Figure 1. Prototype hand gesture UI system
using a multi-core processor

1-3
MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN

9

Figure 2 shows the three hand poses recognized by the
system. When a user holds a hand in front of the camera
(Fig. 1(c)), the algorithm running on the CRS recognizes
the size, position, and pose of the hand in the image. The
detection result is shown on the display (Fig. 1(b)) and the
CRS sends a control command to the PC (Fig. 1(d)).

Figure 3 shows the menu screen displayed on the
monitor (Fig. 1(e)). On system start-up the main menu
(Fig. 3(a)) is shown. The icons correspond to certain
commands such as “Program list” or “System settings”.
When the user makes a pointing gesture (Fig. 2(a)), the
cursor (shown as a red rectangle around icons) moves
according to the hand motion. The user can execute the
commands attached to the each icon by making a fist hand
gesture (Fig. 2(b)). By selecting the “Program list” icon a
menu is displayed (Fig. 3(b)) that allows the user to select
and play video content in the same way. With an open
hand posture (Fig. 2(c)), the user can return to the main
menu.

3. Hand detection using AdaBoost

The object detection method using joint rectangle fea-
tures [4] is used for detecting hand regions. This is an
extension of Viola and Jones’ method [7] where higher
classification performance can be achieved by evaluating
co-occurrence of multiple rectangle features in each weak
classifier.

One detector for each hand posture is scanned across
the image at multiple scales as shown in Figure 4, where
each detector consists of a cascade of strong classifiers.
The initial strong classifier rejects the majority of
sub-windows with very little processing time.
Sub-windows that are not rejected by the initial classifier
are processed by subsequent strong classifiers, each more
complex than the previous one. If any strong classifier
rejects the sub-window, no further processing is per-
formed.

Figure 5 shows an example of strong classifiers. The
output H of a strong classifier is computed as a linear
combination of T weak classifiers ht:

T

t

tt xhsignxH
1

)()(, (1)

where t is the weight of weak classifier t determined
through the learning process using example hand and

non-hand images.
Each weak classifier makes use of multiple rectangle

features. This combined feature is called joint rectangle
feature. Each rectangle feature has a scalar value z that
represents differences in average intensities between two
rectangular regions; RA and RB. The value z can be effi-
ciently calculated from the pre-computed integral image
[7]. The variable s is calculated by

otherwise0

)(if1
)(

pxzp
xs , (2)

where is a threshold and p is a parity indicating the di-
rection of the inequality sign.

The joint rectangle features are represented by combin-
ing the binary variables computed from multiple features.
The value of joint rectangle feature j is calculated by

Ft

i

it

i

t xsxj
1

,

1)(2)(, (3)

where Ft is the number of combined features in weak
classifier t and st,i(x) is the variable obtained by quantizing
zt,i(x), which represents whether it is a hand image or not.

The value of each weak classifier h is determined by
the feature value of the joint rectangle feature j as

otherwise1

)|1()|1(if1
)(

jyPjyP
xhi , (4)

where P(y = +1 | j) and P(y = 1 | j) are joint probabilities
observing feature co-occurrence represented by j. The
values of these joint probabilities are also determined
during the learning process.

4. Optimizing detection for multi-core proc-
essors

To achieve the best performance on multi-core proces-
sors we need to optimize the operation by equally

Figure 4. Multi-scale detection by evaluating sub-windows of N
different sizes.

T

t

tt xhsignxH
1

)()(

Weak classifier 1

Weak classifier T

Strong classifier

: RA : RB

h1(x)

s1,1(x) s1,F1(x)

Feature 1 Feature F1

hT(x)

sT,1(x) sT,FT(x)

Feature 1 Feature FT

Figure 5. Combining weak classifiers into a strong classifier.
Note that in contrast to Viola and Jones’ algorithm, each weak

classifier can use multiple rectangle features.

 (a) pointing hand (b) fist (c) open hand

Figure 2. Training examples for three different hand poses.

 (a) Main menu (b) Program List

Figure 3. VCR simulator menu

10

sub-dividing and distributing it to the processing cores. It
is also important to minimize the communication between
the modules because it takes a certain time to begin com-
munications. Using exclusive local memory associated
with each core helps to minimize the communication by
allocating all data required for the operation. In the fol-
lowing section, we describe how we sub-divide the
detection algorithm for multi-core processors.

4.1. Sub-dividing the operation

In the cascaded detection method the operations for
each detection sub-window can be executed in parallel,
see Fig. 6. When dividing the target image into several
sub-images each sub-image should contain all pixels
scanned by the corresponding detection window. There-
fore, there are pixels in the target image that belong to
more than one sub-images. The height of the shared part is
w d, where w and d are the detection window size and
the step size, respectively. Consequently, the height of
each sub-image hSUB required for these sub-operations is
given by

n

dwh
dwh IMG

SUB

)(
)(, (5)

where hIMG and n are the height of the target image and the
number of sub-operations, respectively.

Fig. 6 shows the result of dividing the 320x240 target
image into eight sub-images for detection by a 50x50 de-
tection sub-window and step size 2. If each processing
core has exclusive local memory, transmitting each
sub-image to local storage significantly increases the de-
tection speed.

When sub-dividing the operation, we must take care not
to divide into too many operations. The height of each
sub-image is 72 pixels in the case of Fig. 6. The sum of
the height of all sub-images is 576 pixels, 2.4 times as
large as the target image. This increases the time for
transmitting these sub-images to processing cores. The
optimal number of divisions depends on the size of the
target image, the size of the detection sub-window, the
communication speed between modules and the number of
processing cores. If the communication speed is fast
enough, it is optimal to set the number of divisions n to
the smallest multiple of the number of cores where the
size of each sub-image is smaller than the size of the local
storage.

4.2. Hand detection in large image regions

In multi-core processors, the size of local storage is

generally small because of hardware restrictions. This
limits the maximum size of the detection window. To
overcome this restriction we use an image pyramid. First,
two down-sampled images of sizes 160x120 and 80x60
pixels are created from the 320x240 pixel input image.
This limits the required maximum size of the detection
window and allows the detection of hand poses close to
the camera. For example, when searching for hand images
at a scale of 80x80 pixels, we can use a 160x120
down-sampled image with a 40x40 detection window.

When using down-sampled images, one should take
care not to use too small detection windows. Experiments
confirmed that the false positive rate increases when the
detection window is smaller than in the original detection
cascade. For example, if the size of the original detection
window is 25x25 pixels, the down-sampled image should
only be used for detecting hand regions larger than 50x50
pixels.

4.3. Parallel feature computation

In addition to distributing the operation to multiple
cores we introduce two types of parallel operations on
each core to accelerate the feature computation: The first
method is to use window-parallel operations. As shown in
Fig. 7(a), the feature values s(x1), s(x2), s(x3) and s(x4)
are calculated for four neighboring detection sub-windows
x1, x2, x3 and x4 in parallel by 4-way SIMD operations,
resulting in a speed-up factor of four. However, the per-
formance depends on the input image because the feature
calculation cannot be terminated until all detection win-
dows have been rejected by the cascade, while the
calculation can be terminated when one of the strong clas-
sifiers rejects the current detection window in a single
feature calculation.

If just one of four detection sub-windows remains as a
candidate, there is no advantage of window-parallel op-
erations. In this case the system focuses on this
sub-window by using feature-parallel operations. As
shown in Fig. 7(b), the feature values s1, s2, s3 and s4 of
four features f1, f2, f3 and f4 are calculated for a single
sub-window x in parallel by 4-way SIMD operations. Al-
though the performance gain of feature-parallel operations
on average is slightly smaller than that of window-parallel
operations (because SIMD operations are not available for
loading feature information) the operating speed is still
faster than without parallel operations. The effective per-
formance of the weak classification operation depends on
the number of component features, but can be up to four
times faster than the weak classification operation without

(0, 0)

(0, 144)

(0, 168)

(0, 24)
(319, 71)

(319, 95)

(319, 239)

(319, 215)

Sub-operation 1

Sub-operation 2

Sub-operation 8

Sub-operation 7

Figure 6. Sub-dividing the operation on an input frame and dis-
tributing the sub-windows to each processing core.

s(x1) s(x2) s(x3) s(x4)

f

x1 x2 x3 x4

f f f

Input

image

s(x1) s(x2) s(x3) s(x4)

f1

x

f2 f3 f4

Input

image

x x x

 (a) Window-parallel (b) Feature-parallel

Figure 7. Two types of parallel operations are used for speeding
up the feature computation using SIMD operations.

11

feature-parallel operations.

5. Evaluation

This section shows experimental results of evaluating
the system performance and usability. To confirm the ef-
fectiveness of the proposed method, we have implemented
the hand gesture recognition on the prototype version of
the Cell Broadband Engine™ (CBE). It has eight cores
which are called Synergistic Processor Elements (SPEs)
operating at 2.8GHz1

. Each SPE can execute 4-way 32-bit
SIMD operations independent of other SPEs and has
256KB exclusive local storage for minimizing the data
communication between modules. Using our optimized
method, the detection can be executed much faster than on
the single processor system.

5.1. Computation time

We evaluated the operating speed of hand gesture rec-
ognition on our system compared with the same operation
on a PC with a single-core Xeon processor. The operating
speed of hand gesture recognition depends on the input
image and the classification cascade used for recognizing
hand gestures. We compare the two systems under the
same conditions using a test sequence of 160 frames. To
compare the performance between a multi-core system
and a single-core system, we disabled the hyper-threading
function of a Xeon processor.

The result is shown in Table 1. We measured the aver-
age, the best case, and the worst case of the operating
speed for recognizing the three hand postures shown in
Figure 2. The average detection time on the PC is 325ms,
while the average time on the CRS is 34ms. The operation
on the CRS is fast enough to realize interactive gesture
recognition.

The CBE can execute up to 32 32-bit operations in par-
allel, while a single-core Xeon processor can execute up
to 4 integer additions and subtractions, or up to 2 opera-
tions in each clock cycle. Thus the expected operating
speed of our system is 8 to 16 times as fast as on a PC.
The result shows that the operating speed on the reference
set is up to 13.5 times faster than on a PC.

5.2. Reliability

The reliability of hand gesture detection is evaluated by
measuring the error rate for each hand posture. Table 2
shows the error rate for each hand posture. The error rates
are calculated from the number of erroneous detections in
approximately 6000 images including seven users in front
of different backgrounds.

Note that the error rate is affected by the background
scene. For example, when an object with many vertical
edges is in the background, the error rates for the open
hand increases because these hand postures also have a lot
of vertical edges. However, the error rate is sufficiently
low for controlling consumer electronics under ordinary
conditions because the joint rectangle features, capturing
local intensity gradients and orientations, are sufficiently
discriminative.

6. Conclusion

For real-time hand gesture recognition we have opti-
mized the hand posture detection for multi-core processors.
The operations are divided and distributed among the
processing cores and processed using two kinds of parallel
operations. Implementing the algorithm on the Cell
Broadband Engine allows us to realize much faster opera-
tion compared with a single-core processor. This
contributes to making the hand gesture UI more respon-
sive and thus more user-friendly.

Acknowledgments

We wish to thank Takeshi Mita and Yasuhiro Taniguchi
of Toshiba Corp. for the contribution in developing the
system. We also thank Toshiba Semiconductor Company
for the support of developing the system using the CRS.

References

[1] L. Bretzner, I. Laptev, T. Lindeberg, “Hand Gesture Recog-
nition using Multi-Scale Colour Features, Hierarchical
Models and Particle Filtering”, Proc. Int. Conf. on Face and
Gesture Recognition, pages 405-410, 2002.

[2] W. T. Freeman, C. D. Weissman, “Television control by hand
gestures”, Proc. Int. Conf. on Face and Gesture Recognition,
1995.

[3] M. Kölsch, M. Turk, “Robust Hand Detection”, Proc. Intl.
Conf. Autom. Face and Gesture Recognition, p. 614-619,
2004.

[4] T. Mita, T. Kaneko, O. Hori, “Joint Haar-like Features for
Face Detection”, Proc. ICCV, pp.1619-1626, 2005.

[5] E.-J. Ong, R. Bowden, “A Boosted Classifier Tree for Hand
Shape Detection”, Intl. Conf. Autom. Face and Gesture Rec-
ognition, p. 889-894, 2004.

[6] B. Stenger, “Template-Based Hand Pose Recognition Using
Multiple Cues”, Proc. ACCV, p. 551-560, 2006.

[7] P. Viola, M. Jones, “Rapid Object Detection using a Boosted
Cascade of Simple Features”, Proc. CVPR, p.511-518, 2001.

1 The release version of CBE has 7 SPEs operating at 3.2GHz.

Table 1. Operating speed for detecting hand postures
in a single image

Cell Reference Set
(CBE 2.8GHz)

Single-core system
(Xeon 2.8GHz)

Operating speed
(average)

24~44 [ms]
(34 [ms])

263~356 [ms]
(325 [ms])

Ratio 7.2~13.5 1

Table 2. Average false detection (false positives) and missed
detection (false negatives) rates are shown for each hand posture

computed from 6000 images from various users and back-
grounds.

Pointing
hand

Fist Open hand

False pos rate 4.6% 0.1% 3.5%

False neg rate 0.0% 4.6% 0.9%

12

