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Abstract 

This paper describes a real-time hand gesture recogni-
tion system and its application to VCR remote control. 
Cascaded classifiers are used to detect a number of dif-
ferent hand poses. In order to detect a hand in real time, 
the detection algorithm is optimized for multi-core proc-
essors by distributing the operations to multiple cores and 
minimizing the data transmission between them. We have 
implemented a detection system on a processor with eight 
cores. Further we have integrated the system into a proto-
type video recorder simulator to evaluate a gesture 
interface for consumer electronics. The operating speed 
increases by a factor of up to 13.5 compared to a standard 
PC with single-core processor. 

1. Introduction 

In daily life remote controls are used to activate con-
sumer electronic products such as televisions, video 
recorders and air-conditioners. However, the number of 
remote controls and number of different functions of each 
may be confusing for some users. In such cases gesture 
control is a viable option for basic operation if the system 
is able to work in the complex visual scenes which may be 
present in a living room. 

Freeman and Weissman presented a method for TV re-
mote control by hand gestures [2]. They used normalized 
correlation and edge orientation to detect an open hand. 
However, the matching cost is high because normalized 
correlation is calculated for all candidate sub-windows, 
thus the detection area and the variation of the detection 
sub-window is restricted. Many systems employ a previ-
ously learned skin color model, for example Bretzner et al. 
[1] used multi-scale color features for hand posture detec-
tion. However, determining skin color is difficult because 
it depends on the lighting condition as well as each indi-
vidual. Including other cues such as motion and edges [6] 
can improve the robustness. 

Recently cascaded classifiers, originally developed for 
efficient face detection, have been applied to hand detec-
tion [3,5]. No skin color model is required and the method 
works under a large range of imaging conditions. One 
difficulty however is that background regions are usually 
included in the cropped training samples. Kölsch and Turk 
[3] have shown that such a detector works well in differ-
ent environments for some hand poses given that the hand 
shape is well aligned. Ong and Bowden [5] used a classi-
fier hierarchy where hand regions are detected initially 
and subsequently the pose is determined. The system was 
reported to perform well in uniform backgrounds. 

In this paper we implement the detection method using 
joint rectangle features [4] for hand detection. This is an 
extension of Viola and Jones’ object detection method [7] 
but allows for the combination of multiple features in each 
weak classifier. In [7] the detector is scanned across the 
image and each sub-window is evaluated using detection 
cascades which consist of a series of classifiers. The initial 
classifier rejects the majority of sub-windows with very 
little processing so that the total computational cost be-
comes smaller. By using joint features, co-occurrences of 
multiple features are evaluated, resulting in better classi-
fication performance for the same number of features 
compared to [7]; see [4] for an evaluation on face data. 

The operating speed of hand posture detection is still 
not fast enough to detect multiple hand postures in real 
time. When using separately trained detectors, one for 
each pose, the computation cost increases in proportion to 
the number of detectors. We achieve the target frame rate 
by optimizing the detection on a multi-core processor. For 
efficiency we introduce two kinds of optimization meth-
ods. First, we modify and divide the operations so that 
they can be executed efficiently using all cores. Further 
two kinds of parallel operations for feature computation 
are introduced. We confirm the efficiency of the method 
through experiments using a system with a Cell Broad-
band Engine™, which consists of eight cores. We achieve 
a speed-up factor of up to 13.5 compared to an implemen-
tation on a standard PC with Xeon processor. 

2. Prototype hand gesture UI system 

Figure 1 shows the prototype hand gesture UI system. It 
consists of five components; the Cell reference set (CRS: 
Fig. 1(a)), a display for the recognition result (Fig. 1(b)), a 
video camera for capturing images (Fig. 1(c)), a PC for 
running the video recorder simulator (Fig. 1(d)), and a 
simulator display (Fig. 1(e)). 
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Figure 1. Prototype hand gesture UI system 
using a multi-core processor 
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Figure 2 shows the three hand poses recognized by the 
system. When a user holds a hand in front of the camera 
(Fig. 1(c)), the algorithm running on the CRS recognizes 
the size, position, and pose of the hand in the image. The 
detection result is shown on the display (Fig. 1(b)) and the 
CRS sends a control command to the PC (Fig. 1(d)). 

Figure 3 shows the menu screen displayed on the 
monitor (Fig. 1(e)). On system start-up the main menu 
(Fig. 3(a)) is shown. The icons correspond to certain 
commands such as “Program list” or “System settings”. 
When the user makes a pointing gesture (Fig. 2(a)), the 
cursor (shown as a red rectangle around icons) moves 
according to the hand motion. The user can execute the 
commands attached to the each icon by making a fist hand 
gesture (Fig. 2(b)). By selecting the “Program list” icon a 
menu is displayed (Fig. 3(b)) that allows the user to select 
and play video content in the same way. With an open 
hand posture (Fig. 2(c)), the user can return to the main 
menu. 

3. Hand detection using AdaBoost 

The object detection method using joint rectangle fea-
tures [4] is used for detecting hand regions. This is an 
extension of Viola and Jones’ method [7] where higher 
classification performance can be achieved by evaluating 
co-occurrence of multiple rectangle features in each weak 
classifier. 

One detector for each hand posture is scanned across 
the image at multiple scales as shown in Figure 4, where 
each detector consists of a cascade of strong classifiers. 
The initial strong classifier rejects the majority of 
sub-windows with very little processing time. 
Sub-windows that are not rejected by the initial classifier 
are processed by subsequent strong classifiers, each more 
complex than the previous one. If any strong classifier 
rejects the sub-window, no further processing is per-
formed. 

Figure 5 shows an example of strong classifiers. The 
output H of a strong classifier is computed as a linear 
combination of T weak classifiers ht:

T

t

tt xhsignxH
1

)()( , (1)  

where t is the weight of weak classifier t determined 
through the learning process using example hand and 

non-hand images. 
Each weak classifier makes use of multiple rectangle 

features. This combined feature is called joint rectangle 
feature. Each rectangle feature has a scalar value z that 
represents differences in average intensities between two 
rectangular regions; RA and RB. The value z can be effi-
ciently calculated from the pre-computed integral image 
[7]. The variable s is calculated by 
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where  is a threshold and p is a parity indicating the di-
rection of the inequality sign. 

The joint rectangle features are represented by combin-
ing the binary variables computed from multiple features. 
The value of joint rectangle feature j is calculated by 

Ft

i

it

i

t xsxj
1

,

1 )(2)( , (3) 

where Ft is the number of combined features in weak 
classifier t and st,i(x) is the variable obtained by quantizing 
zt,i(x), which represents whether it is a hand image or not. 

The value of each weak classifier h is determined by 
the feature value of the joint rectangle feature j as 
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)(

jyPjyP
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where P(y = +1 | j) and P(y = 1 | j) are joint probabilities 
observing feature co-occurrence represented by j. The 
values of these joint probabilities are also determined 
during the learning process. 

4. Optimizing detection for multi-core proc-
essors

To achieve the best performance on multi-core proces-
sors we need to optimize the operation by equally 

Figure 4. Multi-scale detection by evaluating sub-windows of N 
different sizes. 
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Figure 5. Combining weak classifiers into a strong classifier. 
Note that in contrast to Viola and Jones’ algorithm, each weak 

classifier can use multiple rectangle features. 

 (a) pointing hand (b) fist (c) open hand 

Figure 2. Training examples for three different hand poses. 

 (a) Main menu (b) Program List 

Figure 3. VCR simulator menu 
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sub-dividing and distributing it to the processing cores. It 
is also important to minimize the communication between 
the modules because it takes a certain time to begin com-
munications. Using exclusive local memory associated 
with each core helps to minimize the communication by 
allocating all data required for the operation. In the fol-
lowing section, we describe how we sub-divide the 
detection algorithm for multi-core processors. 

4.1. Sub-dividing the operation 

In the cascaded detection method the operations for 
each detection sub-window can be executed in parallel, 
see Fig. 6. When dividing the target image into several 
sub-images each sub-image should contain all pixels 
scanned by the corresponding detection window. There-
fore, there are pixels in the target image that belong to 
more than one sub-images. The height of the shared part is 
w d, where w and d are the detection window size and 
the step size, respectively. Consequently, the height of 
each sub-image hSUB required for these sub-operations is 
given by 

n

dwh
dwh IMG

SUB

)(
)( , (5)  

where hIMG and n are the height of the target image and the 
number of sub-operations, respectively. 

Fig. 6 shows the result of dividing the 320x240 target 
image into eight sub-images for detection by a 50x50 de-
tection sub-window and step size 2. If each processing 
core has exclusive local memory, transmitting each 
sub-image to local storage significantly increases the de-
tection speed. 

When sub-dividing the operation, we must take care not 
to divide into too many operations. The height of each 
sub-image is 72 pixels in the case of Fig. 6. The sum of 
the height of all sub-images is 576 pixels, 2.4 times as 
large as the target image. This increases the time for 
transmitting these sub-images to processing cores. The 
optimal number of divisions depends on the size of the 
target image, the size of the detection sub-window, the 
communication speed between modules and the number of 
processing cores. If the communication speed is fast 
enough, it is optimal to set the number of divisions n to 
the smallest multiple of the number of cores where the 
size of each sub-image is smaller than the size of the local 
storage.  

4.2. Hand detection in large image regions 

In multi-core processors, the size of local storage is 

generally small because of hardware restrictions. This 
limits the maximum size of the detection window. To 
overcome this restriction we use an image pyramid. First, 
two down-sampled images of sizes 160x120 and 80x60
pixels are created from the 320x240 pixel input image. 
This limits the required maximum size of the detection 
window and allows the detection of hand poses close to 
the camera. For example, when searching for hand images 
at a scale of 80x80 pixels, we can use a 160x120 
down-sampled image with a 40x40 detection window. 

When using down-sampled images, one should take 
care not to use too small detection windows. Experiments 
confirmed that the false positive rate increases when the 
detection window is smaller than in the original detection 
cascade. For example, if the size of the original detection 
window is 25x25 pixels, the down-sampled image should 
only be used for detecting hand regions larger than 50x50 
pixels. 

4.3. Parallel feature computation 

In addition to distributing the operation to multiple 
cores we introduce two types of parallel operations on 
each core to accelerate the feature computation: The first 
method is to use window-parallel operations. As shown in 
Fig. 7(a), the feature values s(x1), s(x2), s(x3) and s(x4)
are calculated for four neighboring detection sub-windows 
x1, x2, x3 and x4 in parallel by 4-way SIMD operations, 
resulting in a speed-up factor of four. However, the per-
formance depends on the input image because the feature 
calculation cannot be terminated until all detection win-
dows have been rejected by the cascade, while the 
calculation can be terminated when one of the strong clas-
sifiers rejects the current detection window in a single 
feature calculation. 

If just one of four detection sub-windows remains as a 
candidate, there is no advantage of window-parallel op-
erations. In this case the system focuses on this 
sub-window by using feature-parallel operations. As 
shown in Fig. 7(b), the feature values s1, s2, s3 and s4 of 
four features f1, f2, f3 and f4 are calculated for a single 
sub-window x in parallel by 4-way SIMD operations. Al-
though the performance gain of feature-parallel operations 
on average is slightly smaller than that of window-parallel 
operations (because SIMD operations are not available for 
loading feature information) the operating speed is still 
faster than without parallel operations. The effective per-
formance of the weak classification operation depends on 
the number of component features, but can be up to four 
times faster than the weak classification operation without 
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Figure 6. Sub-dividing the operation on an input frame and dis-
tributing the sub-windows to each processing core. 
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Figure 7. Two types of parallel operations are used for speeding 
up the feature computation using SIMD operations. 
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feature-parallel operations. 

5. Evaluation

This section shows experimental results of evaluating 
the system performance and usability. To confirm the ef-
fectiveness of the proposed method, we have implemented 
the hand gesture recognition on the prototype version of 
the Cell Broadband Engine™ (CBE). It has eight cores 
which are called Synergistic Processor Elements (SPEs) 
operating at 2.8GHz1

. Each SPE can execute 4-way 32-bit 
SIMD operations independent of other SPEs and has 
256KB exclusive local storage for minimizing the data 
communication between modules. Using our optimized 
method, the detection can be executed much faster than on 
the single processor system. 

5.1. Computation time 

We evaluated the operating speed of hand gesture rec-
ognition on our system compared with the same operation 
on a PC with a single-core Xeon processor. The operating 
speed of hand gesture recognition depends on the input 
image and the classification cascade used for recognizing 
hand gestures. We compare the two systems under the 
same conditions using a test sequence of 160 frames. To 
compare the performance between a multi-core system 
and a single-core system, we disabled the hyper-threading 
function of a Xeon processor. 

The result is shown in Table 1. We measured the aver-
age, the best case, and the worst case of the operating 
speed for recognizing the three hand postures shown in 
Figure 2. The average detection time on the PC is 325ms, 
while the average time on the CRS is 34ms. The operation 
on the CRS is fast enough to realize interactive gesture 
recognition. 

The CBE can execute up to 32 32-bit operations in par-
allel, while a single-core Xeon processor can execute up 
to 4 integer additions and subtractions, or up to 2 opera-
tions in each clock cycle. Thus the expected operating 
speed of our system is 8 to 16 times as fast as on a PC. 
The result shows that the operating speed on the reference 
set is up to 13.5 times faster than on a PC. 

5.2. Reliability 

The reliability of hand gesture detection is evaluated by 
measuring the error rate for each hand posture. Table 2 
shows the error rate for each hand posture. The error rates 
are calculated from the number of erroneous detections in 
approximately 6000 images including seven users in front 
of different backgrounds.

Note that the error rate is affected by the background 
scene. For example, when an object with many vertical 
edges is in the background, the error rates for the open 
hand increases because these hand postures also have a lot 
of vertical edges. However, the error rate is sufficiently 
low for controlling consumer electronics under ordinary 
conditions because the joint rectangle features, capturing 
local intensity gradients and orientations, are sufficiently 
discriminative. 

6. Conclusion 

For real-time hand gesture recognition we have opti-
mized the hand posture detection for multi-core processors. 
The operations are divided and distributed among the 
processing cores and processed using two kinds of parallel 
operations. Implementing the algorithm on the Cell 
Broadband Engine allows us to realize much faster opera-
tion compared with a single-core processor. This 
contributes to making the hand gesture UI more respon-
sive and thus more user-friendly. 
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Table 1. Operating speed for detecting hand postures
in a single image 

Cell Reference Set 
(CBE 2.8GHz) 

Single-core system
(Xeon 2.8GHz) 

Operating speed 
(average) 

24~44 [ms] 
(34 [ms]) 

263~356 [ms] 
(325 [ms]) 

Ratio 7.2~13.5 1 

Table 2. Average false detection (false positives) and missed 
detection (false negatives) rates are shown for each hand posture

computed from 6000 images from various users and back-
grounds. 

Pointing 
hand 

Fist Open hand

False pos rate 4.6% 0.1% 3.5% 

False neg rate 0.0% 4.6% 0.9% 
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