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This paper presents a fast registration method based on solving an energy
minimization problem derived by implicit polynomials (IPs). Once a target
object is encoded by an IP, it will be driven fast towards a corresponding source
object along the IP’s gradient flow without using point-wise correspondences.
This registration process is accelerated by a new IP transformation method.
Instead of the time-consuming transformation to a large discrete data set, the
new method can transform the polynomial coefficients to maintain the same
Euclidean transformation. Its computational efficiency enables us to improve a
new application for real-time Ultrasound (US) pose estimation. The reported
experimental results demonstrate the capabilities of our method in overcoming
the limitations of a noisy, unconstrained, and freehand US image, resulting in
fast and robust registration.

1. Introduction

The task of registration aims to build a transformation relationship between a
given (source) object and a target object. It is often an intermediate but crucial
step inside the whole computer vision complexity.

Considerable efforts have been made in this area. One of the most popular ap-
proaches is the Iterative Closest Point (ICP) method 2), whose original form mini-
mized the distances between the closest point pairs. Zhang 24) proposed using k-D
trees to speed up the closest point search. Several groups 4)–7),12)–14),17) improved
the original version by replacing the Euclidean distance or finding more robust
correspondences. However, the ICP-based methods inevitably require extra com-
putation to find the correspondences that are sensitive to local correspondence.
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Avoiding the computation for searching for point-wise correspondences, the
coarse (global) registration methods 18),22) solve the problem by single (non-
iterative) computation, using the central and oriented information of two objects
being extracted from their polynomial coefficients. These methods are very com-
putationally efficient but difficult to deal with in cases where the two objects are
partially overlapped, so they are limited to some specific applications 16).

Recently, consideration has been given to constructing a distance field for
achieving the registration, such as the work in Refs. 9), 11). These methods
spend much extra memory to preserve the distance field for the models and then
register them by the evolution generated in the distance field. The methods also
avoid correspondence searching and thus speed up the convergence, but they are
liable to take too much memory space, especially for a dense model or a 3D
object, and registration is limited in the regions where distance field has been
generated.

In this paper, we first use an implicit polynomial (IP) to model the target ob-
ject, and then we register this IP model to a discrete source object for quickly
finding the transformation relationship. The advantages of our method over the
prior methods are that: i) unlike the ICP-based methods, it avoids the extra
computation for point-wise correspondences; ii) unlike the coarse registration
methods, it totally supports partial-overlapping registration; iii) unlike the regis-
tration methods of preserving a discrete distance field, it needs very little memory
space for preserving a few IP coefficients, and the algebraic model can generate
an infinite distance field to support registration in a wider space.

The remainder of this paper is organized as follows: After introducing IP mod-
eling technique in Section 2, we present our registration method using the IP
model in Section 3. Then in Section 4, in order to further accelerate our algo-
rithm to be suitable for large data set cases we propose an IP transformation
method. Sections 5 and 6 present reports on experimental results and extend the
proposed method to Ultrasound image application. Conclusion and future work
follow in Section 7.

2. IP Modeling

First we concentrate on how to model the target object with an implicit poly-
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210 A Fast Registration Method Using IP and Its Application to Ultrasound Image

nomial. In this section, we first introduce the mathematical formulation of IP,
and then present a modeling technique.

2.1 Formulation of IP
IP is an implicit function defined in a multivariable polynomial form. For

example, a 3D IP of degree n can be denoted by:

fn(x) =
∑

0≤i,j,k;i+j+k≤n

aijkxiyjzk = (1 x . . . zn︸ ︷︷ ︸
m(x)T

)(a000 a100 . . . a00n︸ ︷︷ ︸
a

)T , (1)

where variable x = (x y z) denotes the Cartesian coordinate of a data point and
an IP can be represented as an inner product between the monomial vector and
the coefficient vector as m(x)T a. We employ the inverse lexicographical order 22)

for monomial indices {i, j, k}. The homogeneous binary polynomial of degree r

in x, y, and z,
∑

i+j+k=r aijkxiyjzk, is called the r-th degree form of the IP.
2.2 Distance Field Constraints
Although in the past two decades, IP was attractive to shape representation for

object recognition purpose 3),10),19)–21),26), in this paper we try to take advantage
of IP to model the distance field in order to solve the registration problem. To do
this, we define optimization constraints that let a polynomial be a given signed
distance D at the data point x as:

fn(x) = D, (2)
where D is defined as:

D(x) =

⎧⎪⎨
⎪⎩

0, x ∈ M
+d(x,M), x ∈ Minner

−d(x,M), x ∈ Mouter

, (3)

where we suppose M represents a closed surface of target object; Minner and
Mouter represent its finite inner and outer regions respectively; and d(x,M) is
a the minimum Euclidean distance: d(x,M) = minxi∈M ||x − xi||.

For constructing the signed distance field (SDF), we employ the approximation
method proposed in Ref. 15) that generates two level sets of SDF along the surface
normals. The difference to their method is just that we generate SDF around
the surface more densely and in a wider region.

Fig. 1 (a) noisy data set; (b) fitting result of 4-degree IP; (c) data set with missing data; (d) fit-
ting result of 4-degree IP; (e) resulting gradient field of IP model of the same object.

2.3 Fitting
Using the optimization constraints (2), the IP coefficients can be solved by the

linear least-squares method formulated as:
a = (MTM)−1MTd, (4)

where matrix M consists of the monomial vectors, i.e., the i-th row of M is m(xi)
(see Eq. (1)), and d is the right-hand vector whose ith element is D(xi). For solv-
ing Eq. (4), we adopt our previous modeling method proposed in Ref. 26), which
allows us to adaptively determine the moderate degree for IP different objects
according to the shape complexity. Figure 1 shows the modeling examples: for
the data set shown in Figs. 1 (a) and (c), the resulting fits are shown in Figs. 1 (b)
and (d); Figure 1 (e) shows the resulting gradient field generated by f · �f

‖�f‖ . We
can see that two important characteristics are: i) IP is robust against noises and
occlusions, and ii) IP can provide a stable gradient field around its zero-level set.

3. IP Registration

Having an IP model representing the target object, the next problem is how
to register this IP to the source object. To achieve that, we first define the
registration problem as an energy minimization problem, and then, by minimizing
this energy function, the motion of the source object can be driven to the target
model (IP model).

3.1 Energy Functional
To achieve the registration, an energy functional E which will be minimized to
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find the proper transformation parameters defined as:

p = arg min
p

E(p). (5)

where p is the transformation parameters (p ∈ R6 for rigid transformation). In
general, the energy functional E evaluates the registration by minimizing the
distance between the data set and IP, defined as:

E =
∑

i

dist(T (p,xi), fn),∀xi ∈ Ω, (6)

where T (p,xi) is the function R3 → R3, which returns the transformed point of
xi by the rigid-transform operation respected to parameter p; dist(x, fn) means
a certain distance from the data point x to the zero set of fn; and Ω represents
the 3D region of the source model.

There are multiple choices for the distance dist(x, fn) in Eq. (6), and the com-
mon one is to use L2 norm. Thus it becomes possible to form least-squares
regression with dist(x, fn) = fn(x)2. However, in this work, we choose more
meaningful approximation for the distance representation of IP (see Ref. 21)):

dist(x, fn) =
fn(x)2

‖ �fn(x) ‖2
,∀x ∈ Ω. (7)

3.2 Minimizing Energy Functional
To minimize the energy functional (6), the method employs the following two

steps. First, it minimizes the function without any constraint in the transfor-
mation. This means all points can move freely towards IP along their gradients
during the first minimization. Next, it determines the transformation param-
eters to maintain the Euclidean transformation. These two steps are repeated
alternately until the convergence. The efficiency of this minimization benefits
from its success in avoiding time-consuming computation for finding point-wise
correspondence.

3.2.1 First Step: Free Deformation
At the first step, by calculus of variations (see Ref. 8)), the Gateaux derivative

(first variation) of the functional E in Eq. (6) to point x can be approximately
formulated as:

∂E

∂x
=

∂dist(x, f)
∂x

≈ 2f(x)
�fn(x)

‖ �fn(x) ‖2
= 2g(x), (8)

if we assume ‖ �fn(x) ‖ is a constant and let the gradient vector g(x) =
f(x) �fn(x)

‖�fn(x)‖2 .
Therefore, we need to minimize this functional to satisfy the Euler-Lagrange

equation ∂E
∂x = 0. Thus the steepest descent process is executed in the following

gradient flow for each point x:
∂x
∂t

≈ −2g(x), (9)

where t denotes the time step. From the view of implementation, each point can
be updated as:

xk+1 = xk − 2g(xk), (10)

where xk denotes the point at k-th time step.
Similarly, if we let X ∈ RN×3 represent the integral data set consisting of the

point coordinates as rows, and G ∈ RN×3 be the integral gradients of X, then
Xk at the k-th time step can be updated as the following recurrence:

Xk+1 = Xk − 2G(X). (11)

This shows the fact that, under this operation, all points in the discrete data
set of source object will be moved towards the zero set of polynomials along their
gradients.

3.2.2 Second Step: Rigid Deformation
In the first step, although every point in the source model can move close to

the IP surface, the transformation dose not maintain the rigid transformation
that is necessary for rigid parameter estimation. Therefore, in the second step,
we alter the outcome of the first step so that the result is rigid transformation.
For achieving this, since from the Eq. (11) we can obtain data sets represented
by two matrices Xk and Xk+1 in two continuous steps, the covariant matrix of
these two matrices can be calculated as:

A = (Xk − X̄k)T(Xk+1 − X̄k+1), (12)

where X̄ is a matrix in which each row consists of the mean value (mass center
point) of X. If A (∈ R3×3) is SVD-decomposed as A = USV T, where S is the
diagonal matrix and U and V are the unitary matrices, then rigid transformation
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is obtained by:

R = UV T, t = X̄k − X̄k+1RT, (13)

where R and t are rotation and translation parameters respectively (see Ref. 23)).
Thus, with R and t, we can update the transformation in the first step shown in
Eq. (11) to be rigid transformation as in:

Xk+1 = XkRT + t. (14)

Therefore, the above two steps can be alternately repeated until the discrete
data set of the source model is moved near the IP model with desired accuracy.

4. Acceleration Using IP Transformation

In this section, we present an acceleration method that makes registration more
efficient when the number of source data points is much larger than the number
of IP coefficients of the target model. Since in this case moving the large-scale
data sets to the IP model is obviously time-consuming, instead we inversely move
the IP model towards the discrete model.

To drive this motion of IP requires a transformation method through which
the IP’s coefficients can be transformed to maintain an inverse transformation to
what was done in Eq. (14). Therefore the acceleration method can be described
as a process where, instead of updating the discrete data set in Eq. (14), we
update the coefficients of IP at each step:

ak+1 = V (R, t)ak, (15)

where we suppose ak+1 and ak are IP coefficients at the (k + 1) and k-th time
step, and V is a square transformation matrix corresponding to the Euclidean
transformation of rotation R and translation t. Thus the remained problem is
how to calculate the transformation matrix V in Eq. (15).

4.1 IP Transformation Method
To our knowledge, although prior literatures such as Ref. 22) have introduced

the existence of IP transformation matrix V from the aspect for extracting alge-
braic invariants of IP, unfortunately computational implementation of IP trans-
formation was not explicitly described. Tarel, et al. 18) showed a tensor-based

transformation that represents 3D IP in 4D homogeneous form, and then trans-
formed the tensor elements. The method is good for IP invariants extraction but
still suffers from heavy computational cost for tensor transformation, since for
transforming an r-degree 3D IP, it need to transform 4d tensor elements.

We describe our implementation based on symbolic computation in Ap-
pendix A.1. This solution can be seen as a kind of incremental calculation
that increases, beginning from the transformation for first-degree terms, until
it obtains a transformation for n-th degree terms.

5. Numerical Experiments

In this section, we report results of experiments dealing with some synthetic
data sets to evaluate the method on computational performance. All the exper-
iments were implemented in Matlab 7 with a PC having an Intel core 2 CPU,
2.4 GHz, and 2 GB memory.

5.1 Registration for Synthesized Data Set
Figure 2 shows the registrations in a simple case that registers two synthetic

data sets to target object “bunny” modeled by an IP of degree 8. Also their

(a) (b)

Fig. 2 IP registration with 2D and 3D feature points: (a) registration process between
“bunny” IP model and points (blue points: initial position; green points: selected
mid-step positions; red points: final position). (b) the mean absolute distance
1
N

∑
|dist(x, f)| versus iteration number.
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energy convergence behaviors is shown in Fig. 2 (b) respectively. From this result,
we can see that our method can totally support the partially overlapped objects.

5.2 Comparison between ICP Method and Our Method
We solved a registration task shown in which we initially rotated and trans-

lated the target model to the position shown as blue points in Fig. 3. Then
we tested three methods, standard ICP method 2), ICP method with KD tree 24)

and our method, to let the process iterate until it satisfed the same accuracy for
registration.

Since they are set with the same stopping criterion (same threshold for reg-
istration accuracy), we only compared the computational time and memory in
Tables 1, 2 and 3, which show the registration tasks using 1k points, 2.5k points
and 10k points respectively for both target and source data sets.

It is worth noting that, in the factor of accuracy, IP makes it difficult to achieve

−→

Fig. 3 Illustration for registration: blue points for target object and red points for source
object.

Table 1 Registration using 1k points.

ICP ICP with KD tree IP
CPU Time (sec) 11.95 0.91 0.43
Memory 2K points 2K points + KD tree 1K points + 165 coef.

Table 2 Registration using 2.5k points.

ICP ICP with KD tree IP
CPU Time (sec) 30.54 6.56 0.51
Memory 5K points 5K points + KD tree 2.5K points + 165 coef.

Table 3 Registration using 10k points.

ICP ICP with KD tree IP
CPU Time (sec) 123.01 35.12 1.07
Memory 20K points 20K points + KD tree 10K points + 165 coef.

better registration accuracy, because IP often models the data set “coarsely” by
the global algebraic description. But, on the contrary, the IP model has few
coefficients and little robustness against noises, which make it faster and more
stable when facing noise-condition applications, such as the ultrasound image
application described in the following section.

6. Application to US Image Registration

Ultrasound (US) imaging is widely used for assistance with surgical operations
and clinical diagnosis. The relative pose estimation for a US image to another
modality, such as MRI or CT, is desired and helpful for diagnostic guidance. But
such estimation suffers from difficulties due to poor image quality with speckle
noises, low signal-to-noise ratio, uniform brightness, and the fact that only cross-
section images can be obtained. Fortunately, considering the characteristics of
our method as described above, we can confront this registration problem by
making use of IP.

6.1 Registration for US Images
Registration for US images can be simply viewed as 2D-3D registration, if the

source and target models, 2D feature points, and a 3D organ model represented
by an IP are given.

Three-dimensional organ models are often obtained from a medical modality,
such as CT, MRI or PET, by 3D image segmentation. For example, segmenta-
tion using the Graph Cut or Level set method can extract 3D surface models
from volumetric data. Then the 3D surface models can be modeled by IPs with
the modeling method described in Section 2, and the modeling process can be
achieved offline. On the other hand, 2D feature points extraction must be done
online. The 2D segmentation method for a single image, such as the Level set
method, is not suitable to a real-time requirement.

In this paper, we employed our previous method 25) to register an IP model to
a single US image. The process of this method can be simply viewed as: i) using
an edge detector, it extracts two kinds of feature points around the IP model’s
surface from the US image plane: boundary-like feature points and region-like
feature points, and ii) by our registration method described in Sections 3 and 4,
it drives the motion of boundary-like feature points to the IP model’s surface
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iteration 1# iteration 3# iteration 6# iteration 8#

Fig. 4 Pose estimation for a single US image.

(zero level set) and also drives the motion of region-like feature points into the
IP model’s inner region (negative level set), but the registration process is the
same.

6.2 Experimental Results
6.2.1 Pose Estimation for Phantom ATS514
Figure 4 shows pose estimation process for a US image, where the US images

are obtained by measuring phantom ATS514 1) consisting of the cylinder-like
shapes inside in different materials. Then we use a cylinder-like IP model (2-
degree IP shown in red in Fig. 4) to register the US images. The initial position
is set as: the cylinder-like IP model crosses the US image plane with an angle of
85◦. For this image, 8 iterations are required, and in the process the motion of
the IP is driven to fit to the hole-like region in the image. We show this process
in Fig. 4 with cross-section contour and relative pose between the IP model and
the US plane at each iteration.

Figure 5 shows three US image frames with the same initialization and in
the second row of Fig. 5 the iteration number required and final relative pose are
shown. The third row shows the cross-section contour between the IP and the
US plane at the final iteration. For each case, the consumed CPU time is within
30 ms.

6.2.2 Pose Estimation for Duck Toy
Figure 7 shows another result of the US image pose estimation where the images

are obtained by scanning a duck toy made of rubber in the cistern shown in

Fig. 5 Pose estimation for phantom ATS514. First row: initial position; Second row: final
position; Third row: cross-section contour of IP and US image (white points).

Fig. 6 Left: photograph of measuring a duck toy. Right: IP model of duck object.

Fig. 6 left. We modeled the duck object with an 8-degree IP shown in Fig. 6
right. Figure 7 shows the relative position and the cross-section contour at each
iteration resulting from the registration. In this case the consumed CPU time is
about 180 ms.

6.2.3 Pose Estimation and Tracking for CT Data
The third example is to test by solving a registration problem between real CT

data and a US image. To do this, we first segmented the CT data to obtain the
desired organ object by modern segmentation methods such as Graph Cut (see
Fig. 8). Then we model the organ object by a 4-degree IP as shown in Fig. 8
right. Finding the relative pose to CT data for a US image now becomes finding
the relative pose to the IP model.

The first example is pose estimation for a single US image shown in Fig. 9 where
we show the registration process with relative pose and cross-section contour at
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Fig. 7 Pose estimation for duck toy. First row: relative poses of IP and US images at each
iteration. Second row: cross-section contour at each iteration.

Fig. 8 Segmenting kidney data from the CT scans and modeling with a 4-degree IP.

each selected iteration.
We also tried a tracking problem for a US image sequence by tracking the

position of the kidney object with the above IP model. Results are shown in
Fig. 10 where we show the cross-section contours of IP for selected frames.

7. Conclusion and Future Work

A fast registration method using the IP gradient field has been proposed. It is

Fig. 9 US pose estimation for CT data with 4-degree IP.

Fig. 10 Tracking for US image sequence. Cross-section contours of frames are shown in
black points.

computationally efficient due to the adoption of a two-step minimization process
without point matching, and acceleration supported by IP transformation. We
demonstrated its high performance by applying it into real-time US image reg-
istration, which shows robustness against the presence of weak boundaries and
strong noise, and is possibility suitable for real-time implementation. In future
work, we are considering modeling multiple organ objects using IPs to enhance
the robustness of registration.
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Appendix

A.1 Implementation for IP Transformation
A.1.1 Pure Rotation Transformation
First, let us explain some notations for polynomial operations which were

first introduced by Taubin and Cooper (see Ref. 22)). Let a coefficient
aijk of an IP in Eq. (1) be presented as Φijk

i!j!k! , and a vector Φ[l] =(
Φl00√
l!0!0!

Φl−1,1,0√
(l−1)!1!0!

. . . Φ00l√
0!0!l!

)T

be according to the l-th form of IP. An op-

eration on this vector is defined as: Φ[l,m] = Φ[l] � ΦT
[m], where � represents the

classic matrix multiplication, with the difference that the individual elements
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Φijk√
i!j!k!

and Φabc√
a!b!c!

in each vector are multiplied as Φi+a,j+b,k+c√
i!j!k!

√
a!b!c!

. For example,

Φ[1] =
(

Φ100√
1!0!0!

Φ010√
0!1!0!

Φ001√
0!0!1!

)T

, (16)

and

Φ[1,1] = Φ[1] � ΦT
[1] =

⎛
⎜⎝ Φ200 Φ110 Φ101

Φ110 Φ020 Φ011

Φ101 Φ011 Φ002

⎞
⎟⎠ . (17)

In Ref. 22), it was pointed out that under a non-singular coordinate transforma-
tion A, e.g., Φ′

[l] = A[l]Φ[l], the transformed coefficient matrix is given by

Φ′
[l,m] = A−T

[l] Φ[l,m]A
−1
[m], (18)

where A[l] is a non-singular hl × hl transformation matrix (assuming hl be the
number of monomial in the l-th form), and A[m] is the same. From this equation,
we know that if A[l] and A[m] are given, then a linear relationship between Φ′

[l,m]

and Φ[l,m] can be found; that is, the element-wise correspondence can be linearly
expressed as

Φ′
ijk =

∑
β;i,j,k≤l+m

aαβΦijk = aT
αΦ[l+m]. (19)

Then since all of the elements in vector Φ[l+m] are contained in matrix Φ[l,m],
and similarly all of the elements in Φ′

[l+m] are contained in Φ′
[l,m], a new linear

correspondence can be constructed between Φ[l+m] and Φ′
[l+m] by arranging the

necessary elements in the right order into Φ′
[l+m] as

Φ′
[l+m] = (Φ′

l+m,0,0,Φ
′
l+m−1,1,0,Φ

′
l+m−2,2,0, . . .)

T

= (aT
1 Φ[l+m],aT

2 Φ[l+m],aT
3 Φ[l+m], . . .)T

= A[l+m]Φ[l+m], (20)

if the (l + m)-th transformation matrix is constructed as: A[l+m] =
[aT

1 ,aT
2 ,aT

3 , . . .]T.
As a simple example, the elements of Φ[2]

(
=
(

Φ200
2 Φ110 Φ101

Φ020
2 Φ011

Φ002
2

)T)
are contained in Φ[1,1] shown in Eq. (17), and the elements of Φ′

[2] are contained

in Φ′
[1,1]. From the equation Φ′

[1,1] = R[1]Φ[1,1]R
T
[1] (supposing R[1] is a pure

rotation matrix), it is easy to find out the relationship of a linear expansion for
the elements, e.g., the first element of Φ′

[1,1] is expanded as: Φ′
200 = r1Φ[1,1]rT

1 =

r2
11Φ200 + 2r11r12Φ110 + 2r11r13Φ101 + r2

12Φ020 + 2r12r13Φ011 + r2
13Φ002, where r1

is the first row of R[1] and rij is an element of R[1]. Then since all the elements
in Φ[1,1] are contained in Φ[2], we can find a linear relationship 1

2Φ′
200 = aT

1 Φ[2],
where a1 = (r2

11 r11r12 r11r13 r2
12 r12r13 r2

13)
T is viewed as the first row of A[2].

Therefore, transformation matrices for different forms can be calculated in an
incremental manner as

Algorithm
1) Initialization: given A[1];
2) Φ′

[1,1] = A−T
[1] Φ[1,1]A

−1
[1] −→ A[2];

3) Φ′
[1,2] = A−T

[1] Φ[1,2]A
−1
[2] −→ A[3];

...
n) Φ′

[1,n−1] = A−T
[1] Φ[1,n−1]A

−1
[n−1] −→ A[n].

Here, −→ represents constructing the transformation matrix for the next step,
after finding out the linear mapping relationship between Φ′

[1,l] and Φ[1,l]. Note if
the initial argument A[1] represents the pure rotation, then A[l] is an orthogonal
matrix (see Ref. 22)), and thus Eq. (18) degenerates to

Φ′
[l,m] = A[l]Φ[l,m]A

T
[m].

A.1.2 Affine Transformation
By using homogeneous coordinates, an IP of n variables in Euclidean space

can be described in projective space by a corresponding homogeneous IP of n+1
variables. To convert a ternary (i.e., 3D) IP of degree d

fd
3D(x, y, z) =

∑
0≤i,j,k;i+j+k≤d

aijkxiyjzk (21)

into its homogeneous representation, a new component t = 1 is added to the 3D
IP as

fd
4D(x, y, z, t) =

∑
0≤i,j,k,l;i+j+k+l=d

aijkxiyjzktl. (22)
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Therefore a homogeneous polynomial corresponding to a 3D IP of degree d is a
form of degree d in a 4D IP. Thus the procedure mentioned in the last section
can be used to transform the homogeneous IP (4D IP). The different is that the
incremental algorithm starts from a 4× 4 affine transformation matrix A[1], e.g.,
in the Euclidean case

A[1] =

(
R3×3 t
01×3 1

)
,

where R3×3 and t are a pure 3D rotation matrix and a translation vector. As
a result, a 3D IP of degree d can be affine-transformed only by A[d], once it is
worked out. Furthermore, the incremental scheme can be modified for saving the
computational cost, e.g., for calculating A[9] we can select the incremental order
as:

A[1] → A[2] → A[4] → A[8] → A[9].
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