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Abstract—3D shape comparison with digital copies draws
increasing attention in modern culture heritage studies. In this
paper, we focus on analyzing portrait sculptures of Augustus
with 3D scanned data. A feasible framework of automatic object
categorization is proposed based on shape comparison, where
distinguishing regions are simultaneously detected as well. High
coincidence between our result and previous archaeological spec-
ulations is observed in validation experiments, which confirms
the validity of the proposed method.

I. INTRODUCTION

Augustus, the founder and first emperor of the Roman
Empire, was worshiped by a large number of his statues
scattered throughout the empire. These sculptures have been
arousing people’s attention for centuries.

The portrait sculptures of Augustus can be divided into
several subcategories based on a certain criteria. For instance,
in the pioneering work [1], busts of Augustus were roughly
classified according to the style of forehead hair. At least three
principal types were found, named as Alcudia, Forbes and
Prima Porta respectively, as shown in Fig. 1. Generally speak-
ing, the most canonical type, Prima Porta, is accompanied with
close hair pincer. In contrast, forehead hair of Alcudia type
portraits looks more fluffy, and Forbes type samples have a
more widely apart hair pincer with a trace of uneasy expression
as well. Notice that although this classification is widely
accepted by most archaeologists, it has not been a final verdict
yet. Different classification criteria lead to different results.
For instance, another two different categorization proposals are
presented in studies [2] and [3] respectively.

A. Motivation

We are inspired to explore the study of sculpture cat-
egorization, aiming to develop a fully data-driven catego-
rization method, which is reliable for portrait sculptures. In
particular, we want to extract feature regions that distinguish
subcategories from each other. These regions are also called
distinguishing regions or feature regions in the following
sections.

B. Related Work

Digital archiving technique plays an increasingly important
role in recent archaeological studies. Several studies of ana-

Fig. 1. Three representative portrait sculptures of Augustus from the Museum
of Casts of Classical Sculptures in Munich. They belong to three principal
type—Alcudia, Forbes and Prima Porta respectively. (a), (b) and (c) are
photographs, while (d), (e) and (f) are images rendered from digital copies.

lyzing the sculptural reproduction via 3D shape comparison
have been proposed. For example, taking use of craniofacial
landmarks registration, the hypothesis that Getty Augustus was
re-carved from an earlier portrait of Caligula is proven to be
incorrect [4]. In another study [5], a numerical measurement of
similar statues are developed, with an application to estimate
the attribution of a classical sculpture named Amazon Sciarra.

Shape matching provides an effective way to compare sim-
ilar objects, where accurate correspondences can be acquired.
As an active research topic, several different approaches
have been proposed. For example, in the shape normalization
method, such as [6], objects are first embedded into canonical
form and then compared directly. Although this method is
sensitive to topological noise, it is extremely suitable for com-
paring isometric deformed objects. In case that target objects
vary a lot but semantically similar, skeleton-based method can
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Fig. 2. An illustration of the shape matching process. In this example, the
head part of the Augustus of Prima Porta, shown in Fig. 1(f), was used as
template sample. (a): the target shape; (b): non-rigid registration between target
and template samples; (c): the corresponding points on (a), obtained via a
nearest neighbour searching.

be employed to extract satisfactory correspondences. One of
the representative studies is [7]. For more detailed discussion
on this topic, a comprehensive survey is given in [8].

Besides, mesh segmentation is important to shape analysis
as well. Clustering-based approach are proposed in [9] and
[10]. A more recent study focus on co-segmentation of 3D
shapes is introduced in [11], where subspace clustering is
utilized. Different from our problem, these studies focus on
dividing one or more objects into meaningful patches, while
we pay more attention to locate where are the regions that
distinguish one subcategory from the others.

C. Contribution

In this paper, we focus on the categorization problem
within a group of similar objects. We digitized selected portrait
sculptures of Augustus from the Museum of Casts of Classical
Sculptures in Munich. With the obtained digital copies, a
feasible shape comparison scheme is proposed. Different from
traditional method where only overall similarity is available,
we enrich the comparison with local shape similarity at each
corresponding position. Meanwhile, feature regions that dis-
tinguish subcategories from each other can also be detected.

II. FRAMEWORK
A. Data acquisition and preprocessing

Given a set of sculptures for comparison, we need to obtain
their accurate shape information first. In our case, we utilize
3D modeling techniques introduced in [12] and [13].

Before starting the comparison, the original data has to
be processed to fit some requirements. For sculptures, this
includes shape alignment and matching. Similar to the pre-
processing step described in [14], all samples are first rigidly
aligned together with auto-scaling, and then matched to a
certain template with non-rigid transformation in order to
obtain dense correspondences between them. Fig. 2 gives an
illustration of this matching process. Compared with other
shape matching methods, this approach is both simple and fast.

B. Distinguishing region detection via clustering

Traditionally, when comparing a group of objects, a dis-
tance/similarity matrix similar to the one in Fig. 3 is utilized
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Fig. 3. The construction of distance tensor. Along the direction of sampling
points, each slide itself is a distance matrix at a certain sampling point.

to evaluate pairwise overall distance/similarity. However, since
we have already obtained dense correspondences between
objects, actually similarities can be evaluated at every sampling
points. Thus with an extra dimension of sampling positions,
we extend the traditional distance matrix representation to the
tensor form, which is called distance tensor in this paper.

Fig. 3 illustrates the construction process of distance tensor.
Suppose the given data set contains M similar objects {0},
with N corresponding positions { P}¥ ;. First, for each P; we
calculate a distance matrix D; to record displacements between
all pairs of objects at that position. Then we combine these
distance matrices {D}Y ; together to form a tensor, denoted
as Tarxmxn - Each sampling point is assigned with a distance
matrix, which is a M x M square matrix D;.

With this distance tensor 7 , richer information compared
with the traditional approach can be estimated during shape
comparison. For instance, we can not only divide the data
set into subcategories, but also locate which region makes
one subcategory different from others. In order to detect these
distinguishing regions, proper segmentation of the shape based
on similarities among corresponding regions is required.

Similar to the study in [9], we utilize cluster analysis to
detect distinguishing regions. However, the similarity evalua-
tion between points in our method is different from those mesh
segmentation method. Consider two arbitrary positions in the
corresponding points set, denoted as P and (). The distance
between them is defined as:

dist(P, Q) = distimep (Dp, Dq), (M

where Dp and Dg are distance matrices at positions P and
respectively. distivep(+) is a variation of Euclidean distance
introduced in [15], where spatial relationships of matrix entries
are taken into account as well.

An intuitive example can be used to explain why dis-
tinguishing region between different subcategories can be
detected via clustering. Consider a problem of clustering facial
profiles, as shown in Fig. 4. This data set is extremely simple,
with four human profiles from two subcategories—one with
smaller noses while the other with larger noses. {A;}} ;,
{B;}}_, and {C;}}_, are three groups of corresponding points
at different sampling positions. For simplicity, identical profiles
are used within each subcategory. Actually the only difference
between all these four samples is the shape of nose, which
is shown in the aligned result. Therefore the nose part is the
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Fig. 4. An example of distinguishing feature in profile categorization. Four
human profiles are used, where (a) and (b) are exactly the same, and the
same as (c) and (d). {A;}?_,, {Bi}}_, and {C;}}_, are three groups of
corresponding points. In this example, the only distinguishing region is the
nose, where {B;}#_; and {C;}?_; are included.

distinguishing region we want to detected.

Then we calculate distance matrices at all these three
sampling positions separately. Take the first group {A;}7_,
as an example. The displacement between a certain pair of
points, e.g. A; and As, is evaluated based on the aligned
profiles. Since the positions of these two points coincide, the
displacement dist 4, 4, equals to zero.

The obtained distance matrices are visualized as heat maps
in Fig. 5. It clearly shows that in the sense of comparing
distance matrices within each group, {B;}_; and {C;}}_;
are more “similar” to each other compared with {A;}7 ;.
This result is consistent with the fact that only {B;}}_; and
{C;}%_, locate in the distinguishing region—the nose. This
demonstrates how it works to extract feature regions via cluster
analysis.

In practice, considering that the number of sampling points
is usually a relatively large number for cluster analysis, we
utilized the spectral clustering method [16] to speed up the
calculation.

III. EXPERIMENTS

In our experiment, 12 well kept portrait sculptures of
Augustus from the Museum of Casts of Classical Sculptures
in Munich were used, as demonstrated in Fig. 8. Their digital
copies were acquired by Konica Minolta “Vivid 9i” 3D laser
scanner, with a very high measurement accuracy of £50um.
Since this categorization depends mainly on the front side, here
we compared only the facial part as well as part of the hair
near the forehead. About 50,000 uniformly sampled points on
template sample were used for shape matching.

Fig. 6(b) gives one result of the detected feature regions.
Notice that the number of clusters is manually assigned. In this
example, this number was set to 12 and therefore the facial part
was divided into 12 patches. Besides, in repeated experiments,
even if the number of clusters is fixed, output results might not
always be the same. This is due to the random initialization
of spectral clustering. However, a dominant result will still be
stable among all these outputs.

Taking into account that the forehead hair part is considered
to be important in previous archaeological studies, here we
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Fig. 5. A visualization of distance matrices in the example shown in Fig. 4.
From left to right, these three heat maps correspond to sampling points
{Ai}?:l, {B.i};lzl and {C;}7_, respectively. The lighter color is, the larger
displacement it represents. Black corresponds to zero. It is clear that the latter
two matrices are more similar to each other compared with the first one.

show the categorization result within this region as an example.
Fig. 7 shows the average distance matrix within that patch
as well as the hierarchical clustering result. The clustering
result is further visualized in Fig. 8, where samples are dyed
according to the categorization result shown in Fig. 7(b).

From this result, first we observed that the top left sculpture
shown in Fig. 8, which is called Capito413 for convenience,
has the longest distance from other samples within this feature
region. Notice that it is also the only Alcudia type sample
in this data set. According to previous archaeological studies,
portraits belonged to this type is supposed to have different
forehead hair style from other types. Second, all portraits
dyed with the blue color belong to the Prima Porta type.
In particular, actually the heads of PP and Chiusi are very
close to each other almost in every patches, which was also
noted in [2]. These facts confirm the validity of the method
we proposed.

IV. SUMMARY

In this paper, a feasible solution for sculpture categoriza-
tion is proposed. With the obtained corresponding points on
digital copies, distinguishing feature regions are detected while
categorization. We verified our method with a data set of the
portrait sculptures of Augustus and we believe it can be applied
to other shape comparison cases as well.

There are several limitations of the proposed method. First,
the number of clusters is manually assigned in the step of
feature region detection. Second, as a fast approximation to ac-
quire corresponding points, our shape matching method might

Fig. 6. The result of distinguishing region detection. (a): an input model;
(b): detected feature regions. Number of clusters is set to 12 in this example.
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Fig. 8. Visualization of the categorization result in the forehead hair patch. Reference category labels given by archaeologists are also indicated in parentheses.
Here “PP” is the abbreviation of “Prima Porta”.
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Fig. 7. A demonstration of average distance matrix and hierarchical clustering
result within a certain cluster. This example corresponds to the forehead hair
patch shown in Fig. 6(b), which is colored in cyan.

not be as accurate as the current state-of-the-art algorithm. We
will try to improve these parts in future work.
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