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Abstract—Video completion aims to track, remove, and fill
in unwanted regions foles) of a video sequence. Holes have
to be filled-in consistently to create a visually pleasant deo
output. Challenges arise when big holes propagate along sal
frames (large spatiotemporal holes) in outdoor videos with variant
illumination and structured background. In those cases eve
forefront video completion approaches based on optical floviail
to complete the holes correctly as 3D information is requird to
keep the structure of the scene and a wider field of view is need
to handle the large spatiotemporal holes. To overcome these
limitations, we propose a novel omnidirectional video comfetion
framework based on depth estimation. First, we recover the epth
of the scene from a pixel motion model constrained by known
camera pose. The depth map is further improved by a structure
aware refinement. The refined depth map is then employed for
color propagation into the holes. We perform a set of experirants
to evaluate our approaches for preliminary depth recovery,depth
refinement, and color propagation. Our results confirm that the
proposed framework generates accurate preliminary depth raps,
improves the depth quality maintaining the structure of the

2) Perspective-view video completiofhese techniques can

fill in much larger holes via image completion methods (
[8], [9]) based on texture synthesis or optical flow. Jia et
al. [10] filled in holes by merging source fragments with
known parts of target fragments based on color similari-
ties. Wexler et al. [11] used non-parametric sampling to
fill in holes via global spatio-temporal optimization and
3D patches. Recently, Roxas et al. [12] proposed a spatio-
temporally consistent method to fill in large spatiotem-
poral holes with compelling results. They utilized an
iterative optimization approach that simultaneously sslv
for optical flow minimization and color propagation.
Limitations of these techniques arise when dealing with
holes in structured backgrounds.

3) Omnidirectional video completioLarge spatiotemporal

holes are filled-in exploiting the wider field of view. Flo-
res et al. [13] used perspective views acquired from two

scene, and outperforms state-of-the-art optical-flow-basd video

X : . mnidirectional im warp them via homograph
completion approach in terms of accuracy and visual appeal. omnidirectiona ages to warp the a homograpny

and do pixel replacement using probability maps. Their
method can fill in big holes but fails to consistently

S ) o complete backgrounds with non-planar regions. Kawai
Omnidirectional video a.k.a.360° video” has become et al. [14] used 3D reconstruction from off-the-shelf

ma_instre_am over the recent years due to its _important appli- siructure from Motion [15] and Multiple-View Stereo
cations in the academia and the industry. Objects, people, 0 [16] to align frames and propagate known pixels into
missing frame regions may be unwanted in outdoor captured pgjes, Their method handles structured backgrounds but

videos. Video completion techniques have been applied to requires a highly accurate 3D model of the scene.
remove such undesired video portions (hereafter refered as

holeg in a way that the synthesized video is visually pleasantIn this paper we do not focus in the hole tracking issue,
to the human eye. Visual coherence between filled-in holds aather we concentrate on the problem of filling in large
the unsynthesized video regions require three consigengi spatiotemporal holes in outdoor scenes with static, struc-
geometric consistency to keep the structure of the scene,tared backgrounds. For this purpose, we propose a novel
appearance consistency in terms of color and texture, angranidirectional video completion framework based on depth
temporal consistency to coordinate motion of pixels. Havev estimation from pixel motion analysis. First, pixel motion
achieving visual coherence when big holes propagate aloglgng multiple frames is modeled based on known camera
many frames is challenging, specially in illuminationieat pose. A preliminary depth map of the scene is recovered
scenes with structured backgrounds. from the pixel motion model. The depth map is then refined
Several works on video completion are available in thgreserving the structure of the scene. Finally, the refiregatid

literature. They can be classified into 1) perspective-viel used for filling holes by color propagation.

video inpainting, 2) perspective-view video completionda  The main contributions of this paper are three-fold: 1) A

3) omnidirectional video completion. novel way of depth recovery from pixel motion analysis that
1) Perspective-view video inpaintingHoles are filled-in accurately estimates the depth from a frame sequence with
extending image inpainting methods ( [1], [2], [3], [4].known camera pose. 2) A structure-aware refinement approach

[5]) based on structure propagation. These completitimat significantly improves the quality of depth maps [17)]. 3
techniques ( [6], [7]) can handle dynamic foreground& depth-based color propagation scheme that improves over

but are limited to fill in small holes. the previous state of the art [12] in terms of visual cohegenc

I. INTRODUCTION
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Fig. 1: Method overview.

II. METHOD OVERVIEW

Figure 1 shows the overview of our video completion y=5(=0 — X_vevjo
approach. Input data is the omnidirectional camera pose as 2 : Pu
well as the user-definethrget framesinput frames andkey xl_,y
frame Target frames are all the frames containing holes. We “Pe c .
assume that the occluded region in the target frame can be y = h-1 0=r
observed from other camera positions. From this condition, =m 9=0
the input frames are a set of frames where those occluded $=0 =-m

regions are visible. The key frame is the closest input franfgy. 2: Pixel motion from camera motion. A 3D poifft is
to the target frames. The problem addressed in this workgfojected to a moving camera at poimtsfor times ¢ ={t1,

to estimate the depth at the key frame using the input framgs t3}. Then the 2D pixel motion ofp; is modeled in
and then propagate the color information from the key framgyuirectangular format.

into the holes using the estimated depth. For this purpase, o
approach consists of the following four stages:

1) Motion analysis Assuming a known camera pose, thé¢3}, a 3D pointP in world coordinates X-Y-Z is projected onto
pixel motion Epatiotemporal pixel trajectojyalong the the unit sphere at point;. Mappingp; to an equirectangular
input frames is modeled so that it only depends of a timé&rmat will lead to a 2D pixel motion. Let denote the pixel
invariant pixel depth. The time-invariant depth is definegositionp; = (x+,y:) in image coordinates with € [0; w—1]
as the distance from the scene twigual camerawith andy € [0; h — 1], wherew andh are the width and length in
fixed pose. The virtual camera is chosen depending pikels, respectively, of the equirectangular frame. Thaugh
the camera pose model. We assume the camera pose 2arpixel motion can be modeled by
be modeled by two types of curves: circle or line. Then
the virtual camera is placed at the imaginary center of —2=1g,, if ¢ <0
curvature of the camera path in case the path is circular T w—1) (1 _ ﬂ) otherwise
and is placed at the key frame pose in case the path is a ) ’ @)
line. This setting simplifies the parametric equations that Y = h— 19t

describe the pixel motion from camera motion. ™

2) Preliminary depth recoveryThe depth at the key frame iswhere 9, and ¢, are the zenith and azimuth angles, respec-
recovered by solving for an energy function that accounfgely, of Fig. 2.
for a weighted RGB color variation along the spatiotem- | 5 static scene the pixel motion in the omnidirectional
poral pixel trajectory. Such weights handle frames withame can be calculated from the camera pose, the arigles
high energy gnd also coq3|der the relevance of framggq ¢, and the depth at each timet. Modeling the pixel
based on their temporal distance from the key frame. motjon in terms ofr, is inconvenient for video completion

3) Depth refinementThe recovered preliminary depth mapsince the depth of a pixel would need to be modeled for each
is then refined considering structure preservation via @mera position. In this work, we propose to model the pixel

joint filter that leverages the benefits of an edge'awab%sition at timet in terms of a time-invariant depth as
enhanced intensity image used as guide.

4) Color propagationThe refined depth is used to propagate {_wz_ﬂl¢($tk Ytrst =t 5), if <0
_ 1)

pixel colors along the spatiotemporal pixel trajectorynfro  z:,s = (1 B qs(xt,,ytf,.,tftk.,s)) otherwise
the key frame into the holes at target frames. 2 : . (@)

(w

h—1
I1l. VIDEO COMPLETION FRAMEWORK Ytis = 00, yu t — 1k, 5)

A. Motion Analysis wheret,, corresponds to the time counter for the key frame.

To map a 3D point to a pixel point in an omnidirectionalhe depths is measured from the 3D poitit to a fixed virtual
video frame, the camera projection is modeled using a ued&mera position, as described in the previous section. This
sphere where the camera is located in the ce6teof the virtual relocation of the camera pose allows the simplifarat
sphere, see Fig. 2. For each camera position at tinftl, t2, of the tedious parametric model of-) andd(-).



B. Preliminary Depth Recovery

The goal in this stage is to recover a preliminary depth
map s of a key frame att, from Ny input framesl
{L(;l),lc(?),...,I((;k),...,IéN'N)} corresponding to timed =
{17V 7@ T® . TNWY wherec € {r,g,b} stands for

the RGB channels. For this purpose, our approach combines

(2) with the assumption that the color of a pixelalong
its spatiotemporal trajectory varies slightly. We estiengte
pixel depths; of the image regiorf2 that minimizes the color
variation along its pixel trajectory by solving

E TtEt,sm

teT

3)

g
where E; ;, is a color variation energy functiong; is a
weighting factor that balances the color variation due to
changing illumination by giving more weight to frames near
the key frame, and; is a weighting factor that handles the
effect of outliers. We definé’, ;,, 7, and(; as

2
Bro= > (1@ vs) = MED(.)  @4)
ce{r,g,b}

et/ () ) @
G=1/(1+ Y ap0.)?). ©

ce{r,g,b}

Wherelét)() stands for the pixel color at timeand position
explained in (2), and. ; is the array composed by the intensity
values of pixel: along its spatiotemporal trajectory. In this
paper MED(-) and M AD(-) denote the median and the
median absolute deviation, respectively, of a 1D array.

To estimate the preliminary depth mapby solving (3)
whilst avoiding unwanted local minima, we employ a discrete
solution that runs a number df, depth steps and evaluates
which discrete depth value provides the global minimum. D

C. Depth Refinement

alleviate coarse textures. The processed key fraymis
the solution to the following optimization problem for
edge-aware smoothing:

IIl}nZ (fc,i - Ic,i)z + >\ (ac,i|va:jc|12 + ﬂcz|vyfc|12)7
1

¢ i€
€
where(} is the 2D region of all pixels id,, )\ is a trade-
off factor, andV- denotes the gradient operator. We define
the smoothness factots. ; and 8. ; as

. R . -1
\Volrl} | [Valgl} | [Valyl}
Qe =
' 302/02 = 302/0%  30}/0? (10)
R . . 1
Bei = |vylr|z2 |vylg|z2 |vy[b|z2
ot 302/02  302/0%  3o}/o?

where ¢, stands for the standard deviation of the
channel of I.. Equation (9) is computed solving the
linear system under the Weighted Least Squares (WLS)
framework as in [18].

Wrong contours and subtle depth variations sinare
corrected by a structure-aware filter. A final refined depth
map$ is obtained using, as guide to filters via a Joint
Weighted Median Filter (JWMF). Following a general
JWMF framework, forj = {1,2,3,...,n} ordered depth
values,sy) belonging to the windowf2; centered at pixel

1, the corrected pixel depth is calculated as

k n
. 1
S8; = Smin & S-t. leij > 5 leij7 (11)
J= J=

wherew;; are positive weights. We use a Gaussian weight
given byw;; = exp (|| I; — I; |2 /20?), whereo is a
filtering factor. In this work the computation of (11) is
sped up using the framework proposed by [19].

3)

. Color Propagation
Given the refined depth magp®) of a key framek, the

spatiotemporal trajectory of a pixel is calculated using
aPZ). Then the color of pixeli at 1M s propagated to
the holes in target frameg with RGB intensitiesJ
OPJ((}),J((;Q),...,J((;e),...,Jc(,N“’ge‘)} by following its pixel tra-

Due to the nature of our pixel-based depth recovery
proach of (3), the preliminary depth mapat the key frame
needs a posterior refinement to correct high depth varigti
(scattered holes), wrong contours, and subtle depth @&t ) ks0)
where the depth map should be smooth. To handle thd€&ry- The resulting completed frames suffer from

) ) - _ . k—0) .
issues, we propose the following three-phase depth refinem@'€€ main issues. Some regions g may remain
approach with structure preservation. uncompleted (remaining holes) due to the nature of forward

1) The scattered holes inare detected by color propagation of (2) and the occlusion issues of large
spatiotemporal videos. Second, propagated pixelgfth%)

5;=1|si — MED(s)|/MAD(s), (7)  will be wrongly placed wherg®*) is not reliable. Last, color
. _ inconsistencies around the hole boundariesjé)"f_’é) will
hOlQ if S; < €1 and S; < €9 . . . . .
s = ) , (8) appear due to the variant illumination in outdoor scenes. To
si,  otherwise handle those issues, we propose the following depth-based

wheree; ande, are threshold constants. A refined deptRO!Or pPropagation scheme.

map s is then obtained inpainting the holes by Partial 1) J¥79 is obtained propagating!®’ according to (2).

Differential Equations (PDEs). 2) In order to detect the remaining holes and the wrongly
2) The RGB information of the key framg&. is enhanced placed pixels at7{* 7" the depths*= at the target

to remove high frequency noise, reinforce edges, and frame is obtained propagatirig® according to (2).



Algorithm 1 The proposed framework for video completion

Input: Camera pose, target frames = {Jél)...JC(N‘a’ge‘)},
input framesl = {Lgl)...l,EN'”)}, and key frame
Preliminary depth map recovery:

1: for all pixel i € 1% do
§k> <+ depth that minimizes color variation éfalong
| according to (3)
3: end for
Depth map refinement
4: s*) « PDE inpainting of scattered holes #f) detected
using (8)
5: fc(k) «+ structure-aware enhancement[é’f) using (9)
6: 3 « filtering of s*) guided byi* according to (11)
Color propagation:
7: for £ =110 Nigrger dO

8: ék_%) <+ propagation oﬂgk) to target frame/ using
5(®) according to (2)
9. 5= + propagation of*) to ¢ using (2) Fig. 3: Evaluation of our overall depth estimation approach
10: (=0 . PDE inpainting of missing and wrongly With synthesized scenes. Top row: Key frame (top-right part
propagated pixels a;gk% usings*—~9 (12) and (14) of omnidirectional image format) and ground truth depth map
1. J¥Y . poisson blending off =9 with Middle row: our preliminary and refined depth maps. Bottom
12: end for row: jet color map of the error (blue fdr% and red forl00%)
Output: Completed frameg’ = {J(gkﬁl)__'JékﬂNtarget)} between the ground truth and the preliminary and refineddept
maps.

3) Holes at7¥ 7" are caught as

implementation was done in MatLab on a personal computer

st hole it $*79 is uncompleted (OS: Windows 7; CPU: Corei7 2.93GHz; RAM: 16GB). All
J( — ) — % (1 . . . .
i (k—£) ; ) intensity and depth images were normalized from O to 1. The
J. . otherwise
Gt constants wereVy, = 100, ¢; = 0.05, e¢o = 3, e3 = 0.9,
and a processed " " is then obtained inpainting the ¢4 = 005, A = 0.01, n = 121, ando = 15. In this section
detected holes by PDEs. the subscriptGT refers to ground truth.
(k—£)

4) The wrongly placed pixels af; due to

) the inaccu- A. Evaluation of overall depth estimation approach
racy of 3\ are detected as

Our approach for depth estimation was evaluated using syn-

§F70 = 13970 _ MED,p(3%79),  (13) thesized scenes. We tested our method with a camera motion
(ko) composed by a translation of 0.43 meters per frame and a
hole, if 8 > €3 rotation of 1 degree per frame. We us¥g, = 9 input frames
Jéﬁ-_}a = ¢ hole, if 5570 > e, 14 | = (1, 182 189} for the computation. The results
J¥5=0 0 otherwise of the evaluation are shown in Fig. 3. The error measure for

) o ) ) the preliminary recovered depth maff) and the final refined
where M EDs,p(+) is a 2D median filter, ands and ey depth maps(*) are|8(k) S(C?%Vs(k) and|s (k) _ (k) )|/ (k)

. Slel
are threshold constants. A refingéf ") is then obtained respectively. We found that the proposed prellmlnary depth
inpainting the detected holes by PDEs. recovery approach and the refinement approach performed

5) Finally, the newJ{* " is blended to the hole region ofaccurately. We measured the root-mean-square error (RMSE)
J£9 using Poisson Blending, thus producing a completed the depth map region where the ground truth was accurate,
frame without color inconsistency issues. that is, all the depth map except the sky and gray area (big red

The proposed color propagation approach is then agrea in the colormap visualization). The RMSEsgf ands(®)

plied to all target frames, generating the final resliit= using scf% as reference was 0.1079 and 0.0978, respectively.
(g2 gk Ny The complete video completion _ _
framework is explained in Algorithm 1. B. Evaluation of depth refinement approach

We evaluated our refinement approach using depth maps

obtained by algorithms of [17]. We applied our refinement

We performed quantitative and qualitative evaluations afpproach to 16 algorithms of each image Bstikuba Venus

our video completion framework. For all the experiments, thTeddy and Cones Algorithms were ordered for each image

IV. EXPERIMENTAL RESULTS
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Fig. 4: Evaluation of our depth refinement approach on [17
Algorithms are ranked based on their error for each imay
set. The error is the percent of bad matching pixelsatin
(solid line) anddisc (dashed line). Black lines and red lines
correspond to the error before and after refinement.

. ) g
set by ranking from 1 to 160. The results of the evaluation are o
shown in Fig. 4. The error used for the ranking assessment @ (®) ©
was the percent of bad matching pixels (for absolute errBry. 5: Depth refinement on algorithms of [17]. From top
greater thanl%) on all pixels in the imagea(l) and the to bottom: (a) Ground truth depth map of Tsukuba, Venus,
visible pixels near the occluded regiomis). Our best results Teddy, and Cones; (b) Results of SNCC, DPVI, RTCensus,
for each image set are illustrated in Fig. 5. We found thahd SGMDDW; (c) Our corresponding refinements.
the proposed method improved the accuracy of the depth
maps for most of the evaluated algorithms. The edges of the
depth maps were successfully corrected and aligned with thletion method of [12; We measured the absolute error
corresponding ground truth depth map. The most significaat ) _ (9.0} |J, “) GT|/3 and found that the proposed
improvements were obtained for low-ranked algorithms tha’pproach prowdes accurate structure-aware completettses
need more refinement, while slight degeneration was pradu@ven when holes span around 45 s from the key frame. In
for top-ranked algorithms due to over refinement. contrast, results obtained by [12] failed to keep the stméct

. . . of the scene inside the challenging large spatiotempoiakho
C. Evaluation of video completion approach of the experiment.

We evaluated our proposed approach on real outdoor scenes
captured by a Ladybug 3 camera. The 15 minute long video V. CONCLUSIONS
was down sampled to 3 FPS for convenience. The cameraye have proposed a novel omnidirectional video comple-
motion was composed by a translation of 0.044 meters pfin framework for filling in large spatiotemporal holes kit
frame and a rotation of 0.05 degrees per frame. We use@uctured background. A preliminary depth map of the scene

N = 10 input framesl = {1"=" 1090 39y 5t g key frame is effectively recovered for one fixed virtual
for the computation. The original hole-free target frameasamera position via pixel motion analysis of frame sequence
Jer = {J(OC)¥T7J¢£1C)¥T7' C(lé?} were used as groundwith known camera pose. The depth map is further refined

truth. Large spatlotemporal synthetic holes that cover aecurately preserving the structure of the scene via a joint
most 25% of the full omnidirectional frame were intro- edge-aware smoothing filter guided with an enhanced irtiensi
duced to the orlglnal target frames, resulting in frandess image. Filling in the holes of target frames is successfully
{789, g0 1391 The goal of the experimentachieved using a depth-based color propagation schemé: Qua
was to f|II in the holes oﬂ The estimated depth before andative and quantitative evaluations on synthesized arldisga
after refinement is shown in Fig. 6. The completed results askow that our framework accomplish superior performance fo
shown in Fig. 7. The proposed approach generated compellahepth recovery and refinement as well as completed results
completed outputs with visual coherence. We compared owith consistent visual coherence that significantly preséne
results with the state-of-the-art optical-flow based videm- structure of the scenes inside the holes.



Fig. 6: Depth estimation in real scene. The images are thdatfpof a full equirectangular format. From left to right: BG
of key framek = 140 and our preliminary and refined depth maps.

(©)

Fig. 7: Video completion results. Target frames for {a} 0, (b) £ = 60, and (c)¢ = 120. From top to bottom: ground truth,
synthetic holes, results of [12], our results, error of [¥&fh jet colormap (blue fol0% and red for100%), and our error.
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