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Abstract—Video completion aims to track, remove, and fill
in unwanted regions (holes) of a video sequence. Holes have
to be filled-in consistently to create a visually pleasant video
output. Challenges arise when big holes propagate along several
frames (large spatiotemporal holes) in outdoor videos with variant
illumination and structured background. In those cases even
forefront video completion approaches based on optical flowfail
to complete the holes correctly as 3D information is required to
keep the structure of the scene and a wider field of view is needed
to handle the large spatiotemporal holes. To overcome these
limitations, we propose a novel omnidirectional video completion
framework based on depth estimation. First, we recover the depth
of the scene from a pixel motion model constrained by known
camera pose. The depth map is further improved by a structure-
aware refinement. The refined depth map is then employed for
color propagation into the holes. We perform a set of experiments
to evaluate our approaches for preliminary depth recovery,depth
refinement, and color propagation. Our results confirm that the
proposed framework generates accurate preliminary depth maps,
improves the depth quality maintaining the structure of the
scene, and outperforms state-of-the-art optical-flow-based video
completion approach in terms of accuracy and visual appeal.

I. I NTRODUCTION

Omnidirectional video a.k.a. “360◦ video” has become
mainstream over the recent years due to its important appli-
cations in the academia and the industry. Objects, people, or
missing frame regions may be unwanted in outdoor captured
videos. Video completion techniques have been applied to
remove such undesired video portions (hereafter refered as
holes) in a way that the synthesized video is visually pleasant
to the human eye. Visual coherence between filled-in holes and
the unsynthesized video regions require three consistencies. A
geometric consistency to keep the structure of the scene, an
appearance consistency in terms of color and texture, and a
temporal consistency to coordinate motion of pixels. However,
achieving visual coherence when big holes propagate along
many frames is challenging, specially in illumination-variant
scenes with structured backgrounds.

Several works on video completion are available in the
literature. They can be classified into 1) perspective-view
video inpainting, 2) perspective-view video completion, and
3) omnidirectional video completion.

1) Perspective-view video inpainting: Holes are filled-in
extending image inpainting methods ( [1], [2], [3], [4],
[5]) based on structure propagation. These completion
techniques ( [6], [7]) can handle dynamic foregrounds
but are limited to fill in small holes.

2) Perspective-view video completion: These techniques can
fill in much larger holes via image completion methods (
[8], [9]) based on texture synthesis or optical flow. Jia et
al. [10] filled in holes by merging source fragments with
known parts of target fragments based on color similari-
ties. Wexler et al. [11] used non-parametric sampling to
fill in holes via global spatio-temporal optimization and
3D patches. Recently, Roxas et al. [12] proposed a spatio-
temporally consistent method to fill in large spatiotem-
poral holes with compelling results. They utilized an
iterative optimization approach that simultaneously solves
for optical flow minimization and color propagation.
Limitations of these techniques arise when dealing with
holes in structured backgrounds.

3) Omnidirectional video completion: Large spatiotemporal
holes are filled-in exploiting the wider field of view. Flo-
res et al. [13] used perspective views acquired from two
omnidirectional images to warp them via homography
and do pixel replacement using probability maps. Their
method can fill in big holes but fails to consistently
complete backgrounds with non-planar regions. Kawai
et al. [14] used 3D reconstruction from off-the-shelf
Structure from Motion [15] and Multiple-View Stereo
[16] to align frames and propagate known pixels into
holes. Their method handles structured backgrounds but
requires a highly accurate 3D model of the scene.

In this paper we do not focus in the hole tracking issue,
rather we concentrate on the problem of filling in large
spatiotemporal holes in outdoor scenes with static, struc-
tured backgrounds. For this purpose, we propose a novel
omnidirectional video completion framework based on depth
estimation from pixel motion analysis. First, pixel motion
along multiple frames is modeled based on known camera
pose. A preliminary depth map of the scene is recovered
from the pixel motion model. The depth map is then refined
preserving the structure of the scene. Finally, the refined depth
is used for filling holes by color propagation.

The main contributions of this paper are three-fold: 1) A
novel way of depth recovery from pixel motion analysis that
accurately estimates the depth from a frame sequence with
known camera pose. 2) A structure-aware refinement approach
that significantly improves the quality of depth maps [17]. 3)
A depth-based color propagation scheme that improves over
the previous state of the art [12] in terms of visual coherence.
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Fig. 1: Method overview.

II. M ETHOD OVERVIEW

Figure 1 shows the overview of our video completion
approach. Input data is the omnidirectional camera pose as
well as the user-definedtarget frames, input frames, andkey
frame. Target frames are all the frames containing holes. We
assume that the occluded region in the target frame can be
observed from other camera positions. From this condition,
the input frames are a set of frames where those occluded
regions are visible. The key frame is the closest input frame
to the target frames. The problem addressed in this work is
to estimate the depth at the key frame using the input frames
and then propagate the color information from the key frame
into the holes using the estimated depth. For this purpose, our
approach consists of the following four stages:

1) Motion analysis: Assuming a known camera pose, the
pixel motion (spatiotemporal pixel trajectory) along the
input frames is modeled so that it only depends of a time-
invariant pixel depth. The time-invariant depth is defined
as the distance from the scene to avirtual camerawith
fixed pose. The virtual camera is chosen depending of
the camera pose model. We assume the camera pose can
be modeled by two types of curves: circle or line. Then
the virtual camera is placed at the imaginary center of
curvature of the camera path in case the path is circular
and is placed at the key frame pose in case the path is a
line. This setting simplifies the parametric equations that
describe the pixel motion from camera motion.

2) Preliminary depth recovery: The depth at the key frame is
recovered by solving for an energy function that accounts
for a weighted RGB color variation along the spatiotem-
poral pixel trajectory. Such weights handle frames with
high energy and also consider the relevance of frames
based on their temporal distance from the key frame.

3) Depth refinement: The recovered preliminary depth map
is then refined considering structure preservation via a
joint filter that leverages the benefits of an edge-aware
enhanced intensity image used as guide.

4) Color propagation: The refined depth is used to propagate
pixel colors along the spatiotemporal pixel trajectory from
the key frame into the holes at target frames.

III. V IDEO COMPLETION FRAMEWORK

A. Motion Analysis

To map a 3D point to a pixel point in an omnidirectional
video frame, the camera projection is modeled using a unit
sphere where the camera is located in the centerC of the
sphere, see Fig. 2. For each camera position at timet={t1, t2,
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Fig. 2: Pixel motion from camera motion. A 3D pointP is
projected to a moving camera at pointspt for times t ={t1,
t2, t3}. Then the 2D pixel motion ofpt is modeled in
equirectangular format.

t3}, a 3D pointP in world coordinates X-Y-Z is projected onto
the unit sphere at pointpt. Mappingpt to an equirectangular
format will lead to a 2D pixel motion. Let denote the pixel
positionpt = (xt, yt) in image coordinates withx ∈ [0;w−1]
andy ∈ [0;h− 1], wherew andh are the width and length in
pixels, respectively, of the equirectangular frame. Thus,such
2D pixel motion can be modeled by

xt =

{

−w−1
2π φt, if φt < 0

(w − 1)
(

1− φt

2π

)

, otherwise

yt =
h− 1

π
θt

, (1)

where θt and φt are the zenith and azimuth angles, respec-
tively, of Fig. 2.

In a static scene the pixel motion in the omnidirectional
frame can be calculated from the camera pose, the anglesθ
and φ, and the depthr at each timet. Modeling the pixel
motion in terms ofrt is inconvenient for video completion
since the depth of a pixel would need to be modeled for each
camera position. In this work, we propose to model the pixel
position at timet in terms of a time-invariant depths as

xt,s =

{

−w−1
2π φ(xtk , ytk , t− tk, s), if φ < 0

(w − 1)
(

1−
φ(xtk

,ytk
,t−tk,s)

2π

)

, otherwise

yt,s =
h− 1

π
θ(xtk , ytk , t− tk, s)

, (2)

wheretk corresponds to the time counter for the key frame.
The depths is measured from the 3D pointP to a fixed virtual
camera position, as described in the previous section. This
virtual relocation of the camera pose allows the simplification
of the tedious parametric model ofφ(·) andθ(·).



B. Preliminary Depth Recovery

The goal in this stage is to recover a preliminary depth
map s of a key frame attk from NIN input framesI =

{I
(1)
c , I

(2)
c , ..., I

(k)
c , ..., I

(NIN)
c } corresponding to timesT =

{T (1), T (2), ..., T (k), ..., T (NIN)}, wherec ∈ {r, g, b} stands for
the RGB channels. For this purpose, our approach combines
(2) with the assumption that the color of a pixeli along
its spatiotemporal trajectory varies slightly. We estimate the
pixel depthsi of the image regionΩ that minimizes the color
variation along its pixel trajectory by solving

min
si∈Ω

ζi
∑

t∈T

τtEt,si , (3)

where Et,si is a color variation energy function,τt is a
weighting factor that balances the color variation due to
changing illumination by giving more weight to frames near
the key frame, andζi is a weighting factor that handles the
effect of outliers. We defineEt,si , τt, andζi as

Et,si =
∑

c∈{r,g,b}

(

I(t)c (xt,si , yt,si)−MED(Ic,i)
)2

, (4)

τt = 1
/

(

1 +
( T (k) − t

T (NIN) − T (1)

)2
)

, (5)

ζi = 1
/(

1 +
∑

c∈{r,g,b}

(MAD(Ic,i))
2
)

, (6)

whereI(t)c (·) stands for the pixel color at timet and position
explained in (2), andIc,i is the array composed by the intensity
values of pixeli along its spatiotemporal trajectory. In this
paper MED(·) and MAD(·) denote the median and the
median absolute deviation, respectively, of a 1D array.

To estimate the preliminary depth maps by solving (3)
whilst avoiding unwanted local minima, we employ a discrete
solution that runs a number ofNs depth steps and evaluates
which discrete depth value provides the global minimum.

C. Depth Refinement

Due to the nature of our pixel-based depth recovery ap-
proach of (3), the preliminary depth maps at the key frame
needs a posterior refinement to correct high depth variations
(scattered holes), wrong contours, and subtle depth variations
where the depth map should be smooth. To handle those
issues, we propose the following three-phase depth refinement
approach with structure preservation.

1) The scattered holes ins are detected by

s̄i = |si −MED(s)|/MAD(s), (7)

si =

{

hole, if si < ǫ1 and s̄i < ǫ2

si, otherwise
, (8)

whereǫ1 andǫ2 are threshold constants. A refined depth
map s is then obtained inpainting the holes by Partial
Differential Equations (PDEs).

2) The RGB information of the key frameIc is enhanced
to remove high frequency noise, reinforce edges, and

alleviate coarse textures. The processed key frameÎc is
the solution to the following optimization problem for
edge-aware smoothing:

min
Îc

∑

i∈Ω

(Îc,i − Ic,i)
2 + λ

(

αc,i|∇xÎc|
2
i + βc,i|∇y Îc|

2
i

)

,

(9)
whereΩ is the 2D region of all pixels inIc, λ is a trade-
off factor, and∇· denotes the gradient operator. We define
the smoothness factorsαc,i andβc,i as

αc,i =

(

|∇xÎr |
2
i

3σ2
r/σ

2
c

+
|∇xÎg |

2
i

3σ2
g/σ

2
c

+
|∇xÎb|

2
i

3σ2
b/σ

2
c

)−1

βc,i =

(

|∇y Îr|
2
i

3σ2
r/σ

2
c

+
|∇y Îg|

2
i

3σ2
g/σ

2
c

+
|∇y Îb|

2
i

3σ2
b/σ

2
c

)−1
, (10)

where σc stands for the standard deviation of thec-
channel of Ic. Equation (9) is computed solving the
linear system under the Weighted Least Squares (WLS)
framework as in [18].

3) Wrong contours and subtle depth variations ins are
corrected by a structure-aware filter. A final refined depth
map ŝ is obtained usinĝIc as guide to filters via a Joint
Weighted Median Filter (JWMF). Following a general
JWMF framework, forj = {1, 2, 3, ..., n} ordered depth
valuess(i)j belonging to the windowΩi centered at pixel
i, the corrected pixel depth is calculated as

ŝi = smin k s.t.
k
∑

j=1

wij ≥
1

2

n
∑

j=1

wij , (11)

wherewij are positive weights. We use a Gaussian weight
given bywij = exp

(

‖ Îi − Îj ‖
2 /2σ2

)

, whereσ is a
filtering factor. In this work the computation of (11) is
sped up using the framework proposed by [19].

D. Color Propagation

Given the refined depth map̂s(k) of a key framek, the
spatiotemporal trajectory of a pixeli is calculated using
(2). Then the color of pixeli at I

(k)
c is propagated to

the holes in target framesℓ with RGB intensitiesJ =

{J
(1)
c , J

(2)
c , ..., J

(ℓ)
c , ..., J

(Ntarget)
c } by following its pixel tra-

jectory. The resulting completed framesJ (k→ℓ)
c suffer from

three main issues. Some regions ofJ (k→ℓ)
c may remain

uncompleted (remaining holes) due to the nature of forward
color propagation of (2) and the occlusion issues of large
spatiotemporal videos. Second, propagated pixels inJ

(k→ℓ)
c

will be wrongly placed when̂s(k) is not reliable. Last, color
inconsistencies around the hole boundaries ofJ

(k→ℓ)
c will

appear due to the variant illumination in outdoor scenes. To
handle those issues, we propose the following depth-based
color propagation scheme.

1) J
(k→ℓ)
c is obtained propagatingI(k)c according to (2).

2) In order to detect the remaining holes and the wrongly
placed pixels atJ (k→ℓ)

c , the depthŝ(k→ℓ) at the target
frame is obtained propagatinĝs(k) according to (2).



Algorithm 1 The proposed framework for video completion

Input: Camera pose, target framesJ = {J
(1)
c ...J

(Ntarget)
c },

input framesI = {I(1)c ...I
(NIN)
c }, and key framek

Preliminary depth map recovery:
1: for all pixel i ∈ I

(k)
c do

2: s
(k)
i ← depth that minimizes color variation ofi along

I according to (3)
3: end for

Depth map refinement:
4: s(k) ← PDE inpainting of scattered holes ats(k) detected

using (8)
5: Î

(k)
c ← structure-aware enhancement ofI

(k)
c using (9)

6: ŝ(k) ← filtering of s(k) guided byÎ(k)c according to (11)
Color propagation:

7: for ℓ = 1 to Ntarget do
8: J

(k→ℓ)
c ← propagation ofI(k)c to target frameℓ using

ŝ(k) according to (2)
9: ŝ(k→ℓ) ← propagation of̂s(k) to ℓ using (2)

10: J
(k→ℓ)
c ← PDE inpainting of missing and wrongly

propagated pixels atJ (k→ℓ)
c usingŝ(k→ℓ), (12) and (14)

11: J
(k→ℓ)
c ← Poisson blending ofJ (k→ℓ)

c with J
(ℓ)
c

12: end for
Output: Completed framesJ’ = {J (k→1)

c ...J
(k→Ntarget)
c }

3) Holes atJ (k→ℓ)
c are caught as

J
(k→ℓ)
c,i =

{

hole, if ŝ
(k→ℓ)
i is uncompleted

J
(k→ℓ)
c,i , otherwise

, (12)

and a processedJ (k→ℓ)
c is then obtained inpainting the

detected holes by PDEs.
4) The wrongly placed pixels atJ (k→ℓ)

c due to the inaccu-
racy of ŝ(k) are detected as

š
(k→ℓ)
i = |ŝ

(k→ℓ)
i −MED2D(ŝ

(k→ℓ))|, (13)

J
(k→ℓ)
c,i =











hole, if ŝ
(k→ℓ)
i > ǫ3

hole, if š
(k→ℓ)
i > ǫ4

J
(k→ℓ)
c,i , otherwise

, (14)

whereMED2D(·) is a 2D median filter, andǫ3 and ǫ4
are threshold constants. A refinedJ (k→ℓ)

c is then obtained
inpainting the detected holes by PDEs.

5) Finally, the newJ (k→ℓ)
c is blended to the hole region of

J
(ℓ)
c using Poisson Blending, thus producing a completed

frame without color inconsistency issues.

The proposed color propagation approach is then ap-
plied to all target frames, generating the final resultJ’ =

{J
(k→1)
c , ..., J

(k→Ntarget)
c }. The complete video completion

framework is explained in Algorithm 1.

IV. EXPERIMENTAL RESULTS

We performed quantitative and qualitative evaluations of
our video completion framework. For all the experiments, the

Fig. 3: Evaluation of our overall depth estimation approach
with synthesized scenes. Top row: Key frame (top-right part
of omnidirectional image format) and ground truth depth map.
Middle row: our preliminary and refined depth maps. Bottom
row: jet color map of the error (blue for0% and red for100%)
between the ground truth and the preliminary and refined depth
maps.

implementation was done in MatLab on a personal computer
(OS: Windows 7; CPU: Corei7 2.93GHz; RAM: 16GB). All
intensity and depth images were normalized from 0 to 1. The
constants wereNs = 100, ǫ1 = 0.05, ǫ2 = 3, ǫ3 = 0.9,
ǫ4 = 0.05, λ = 0.01, n = 121, andσ = 15. In this section
the subscriptGT refers to ground truth.

A. Evaluation of overall depth estimation approach

Our approach for depth estimation was evaluated using syn-
thesized scenes. We tested our method with a camera motion
composed by a translation of 0.43 meters per frame and a
rotation of 1 degree per frame. We usedNIN = 9 input frames
I = {I

(1)
c , I

(2)
c , ..., I

(k=9)
c } for the computation. The results

of the evaluation are shown in Fig. 3. The error measure for
the preliminary recovered depth maps(k) and the final refined
depth map̂s(k) are |s(k) − s

(k)
GT |/s

(k)
GT and |ŝ(k) − s

(k)
GT |/s

(k)
GT ,

respectively. We found that the proposed preliminary depth
recovery approach and the refinement approach performed
accurately. We measured the root-mean-square error (RMSE)
in the depth map region where the ground truth was accurate,
that is, all the depth map except the sky and gray area (big red
area in the colormap visualization). The RMSE ofs(k) andŝ(k)

usings(k)GT as reference was 0.1079 and 0.0978, respectively.

B. Evaluation of depth refinement approach

We evaluated our refinement approach using depth maps
obtained by algorithms of [17]. We applied our refinement
approach to 16 algorithms of each image setTsukuba, Venus,
Teddy, and Cones. Algorithms were ordered for each image
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Fig. 4: Evaluation of our depth refinement approach on [17].
Algorithms are ranked based on their error for each image
set. The error is the percent of bad matching pixels onall
(solid line) anddisc (dashed line). Black lines and red lines
correspond to the error before and after refinement.

set by ranking from 1 to 160. The results of the evaluation are
shown in Fig. 4. The error used for the ranking assessment
was the percent of bad matching pixels (for absolute error
greater than1%) on all pixels in the image (all) and the
visible pixels near the occluded regions (disc). Our best results
for each image set are illustrated in Fig. 5. We found that
the proposed method improved the accuracy of the depth
maps for most of the evaluated algorithms. The edges of the
depth maps were successfully corrected and aligned with the
corresponding ground truth depth map. The most significant
improvements were obtained for low-ranked algorithms that
need more refinement, while slight degeneration was produced
for top-ranked algorithms due to over refinement.

C. Evaluation of video completion approach

We evaluated our proposed approach on real outdoor scenes
captured by a Ladybug 3 camera. The 15 minute long video
was down sampled to 3 FPS for convenience. The camera
motion was composed by a translation of 0.044 meters per
frame and a rotation of 0.05 degrees per frame. We used
NIN = 10 input framesI = {I

(k=140)
c , I

(160)
c , ..., I

(320)
c }

for the computation. The original hole-free target frames
JGT = {J

(0)
c,GT , J

(1)
c,GT , ..., J

(139)
c,GT } were used as ground

truth. Large spatiotemporal synthetic holes that cover al-
most 25% of the full omnidirectional frame were intro-
duced to the original target frames, resulting in framesJ =

{J
(0)
c , J

(1)
c , ..., J

(ℓ)
c , ..., J

(139)
c }. The goal of the experiment

was to fill in the holes ofJ. The estimated depth before and
after refinement is shown in Fig. 6. The completed results are
shown in Fig. 7. The proposed approach generated compelling
completed outputs with visual coherence. We compared our
results with the state-of-the-art optical-flow based videocom-

(a) (b) (c)

Fig. 5: Depth refinement on algorithms of [17]. From top
to bottom: (a) Ground truth depth map of Tsukuba, Venus,
Teddy, and Cones; (b) Results of SNCC, DPVI, RTCensus,
and SGMDDW; (c) Our corresponding refinements.

pletion method of [12]. We measured the absolute error
as
∑

c∈{r,g,b} |J
(ℓ)
c4 − J

(ℓ)
c,GT |/3 and found that the proposed

approach provides accurate structure-aware completed results
even when holes span around 45 s from the key frame. In
contrast, results obtained by [12] failed to keep the structure
of the scene inside the challenging large spatiotemporal holes
of the experiment.

V. CONCLUSIONS

We have proposed a novel omnidirectional video comple-
tion framework for filling in large spatiotemporal holes with
structured background. A preliminary depth map of the scene
at a key frame is effectively recovered for one fixed virtual
camera position via pixel motion analysis of frame sequences
with known camera pose. The depth map is further refined
accurately preserving the structure of the scene via a joint
edge-aware smoothing filter guided with an enhanced intensity
image. Filling in the holes of target frames is successfully
achieved using a depth-based color propagation scheme. Quali-
tative and quantitative evaluations on synthesized and real data
show that our framework accomplish superior performance for
depth recovery and refinement as well as completed results
with consistent visual coherence that significantly preserve the
structure of the scenes inside the holes.



Fig. 6: Depth estimation in real scene. The images are the tophalf of a full equirectangular format. From left to right: RGB
of key framek = 140 and our preliminary and refined depth maps.

(a) (b) (c)

Fig. 7: Video completion results. Target frames for (a)ℓ = 0, (b) ℓ = 60, and (c)ℓ = 120. From top to bottom: ground truth,
synthetic holes, results of [12], our results, error of [12]with jet colormap (blue for0% and red for100%), and our error.
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